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MARKOVIAN DECISION PROCESSES WITH UNCERTAIN 

TRANSITION PROBABILITIES 

by 

John Co z so lino 

Romulo Gonzalez 

Ralph Miller 

ABSTRACT 

The theory for finding optimal policies for Markov processes with 
transition rewards and many alternatives in each state,  when the transi- 
tion probabilities are given,  has already been developed.    But in most 
practical applications,   these transition probabilities are not known 
exactly--one has only some prior knowledge about them. 

This problem of uncertain transition probabilities was first treated 
by Dr.  E.  A.  Silver in the Interim Technical Report #1 of the Operations 
Research Center of M.   I.  T.    Section I of the present report extends sev- 
eral of Silver's results.    We propose a dynamic programming formulation 
for the problem of choosing an optimal operating strategy and we carry 
out the solution for a special two-state example.    However,   it is found 
that solution of non-trivial problems of any higher dimension is impracti- 
cal. 

Section II is concerned with experimental and heuristic approaches to 
the problem,  and relies upon simulation rather than upon analysis.    We 
investigate certain statistics of the process when the unknown transition 
probabilities are governed by a multi-dimensional beta prior (a convenient 
form for Bayes modification).    We find that the process with known prob- 
abilities which are equal to the mean values of the unknown probabilities, 
provides us with a remarkably good picture of the unknown process.    The 
hypothesis is stated and investigated that this process of expected values 
is adequate for decision purposes,   and that determining decisions from it 
is feasible as well as useful. 

Finally,   some alternative approac! es are suggested for cases which 
might not be handled by the expected values technique. 
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CHAPTER I 

INTRODUCTION 

1. 1      Statement of problem 

The process which we are considering is a multistage discrete time 

Markov process with transition rewards.    The decision structure consists 

of a set of possible alternative actions in each state.    Each such action has 

associated with it a unique set of transition probabilities and rewards.    At 

each time period,  an alternative must be specified for the state currently 

occupied.    A set of alternatives,  one for each state,  is called a policy. 

We might illustrate the structure of the problem by setting forth a 

simple example that will be familiar to those who have read reference (1). 

A taxi driver operates between three towns: A,  B,  and C.    The probability 

of ais picking up a fare to a particular destination is dependent upon where 

he is now,   so we set up a Markovian model.    But in addition we assume that 

he can follow one of three different courses of action: 

1. He may cruise around and wait to be hailed. 

2. He may wait at a cab stand for a fare to come along. 

3. He may wait at a radio call box for a call to come through. 

Of course, his choice cf alternative will alter his probabilities of 

picking up fares to the various towns--for instance,  it may be more likely 

that a radio call will be for a long trip.    Also, the rewards will be influ- 

enced by the alternatives because of the differing costs involved--it is 

cheaper to wait at a cab stand than to cruise (although n may take longer 

to get a fare). 
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Lei us assume that all three alternatives are open to our driver,   except 

in town  B  where there is no radio call box,   so that alternative   3  is not 

possible.    We might find the following probabilities and rewards to prevail: 

Probability Matrix 

P  = 

lown  A Town B Town  C 
Town   A    1 1/2 1/4 1/4 

2 1/16 3/4 3/16 

3 1/4 1/8 5/8 

Town   B    1 1/2 0 1/2 

2 1/16 7/8 1/16 
Town   C    1 1/4 1/4 1/2 

2 1/8 3/4 1/8 

3 3/4 1/16 3/16 

R  = 

Reward Matrix 

Town A 

Town A 1 10 

2 8 

3 4 

Town B 1 14 

2 8 

Town C 1 10 

2 6 

3 4 

)wn  B Town C 

4 8 

2 4 

6 4 

0 18 

16 8 

2 8 

4 2 

0 6 
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This then is the structure of the problem we shall consider.    When all 

transition probabilities and rewards are known,   it is possible to find the 

optimal policy for an operation which lasts for a finite time with terminal 

rewards,   or one which lasts indefinitely long.    Also,   in this infinite dura- 

tion case,   we might maximize the expected gain per period,   or,   alternatively 

we might prefer to discount the future rewards and maximize the present 

value of the infinitely long reward stream.    Both of these cases have been 

solved by Howard's policy iteration method.   (1) 

The work reported in this technical note concerns the Markov decision 

problem in which the decision maker has imperfect knowledge of the transi- 

tion probabilities for the process.    We assume that we have some prior 

knowledge about these unknown transition probabilities,   and that this infor- 

mation is expressed in a probabilistic manner.    We can gain information 

about these unknowns by observing transitions as the process continues. 

This problem becomer trivial in the infinite duration,   no discounting 

case.    The optimal solution to the decision problem is to experiment in- 

definitely long with every alternative to find the exact values of the unknown 

transition probabilities,   then solve the deterministic decision problem by 

Howard's policy iteration to find a policy to use for an infinite amount of 

time.    This follows because even an infinitesimal improvement in the ex- 

pected gain per period is worth an infinite amount in this case. 

However,   when time has value,   this becomes quite a different (and 

difficult) problem.    We must do some experimentation to find the best 
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policy,  but the longer we experiment,  the less that best  policy becomes 

worth to us.    We would expect that for any discount factor,  there would 

exist a best strategy in an expected value sense.    Such a strategy would 

specify the best choice of alternative in each state for each distinct set 

of prior knowledge.    Since prior knowledge is updated in time as the pro- 

cess operates (giving us information),  the best choice of alternative 

changes in time as well.    It is important to see that the optimal strategy 

since it is optimal in an expected value sense,  would not necessarily 

ever lead us to follow that policy which is in fact optimal (that is,  we 

would follow if we knew all the transition probabilities exactly).    The 

optimal strategy will, rather,  give the best trade-off between search and 

immediate earnings. 

In this report we will consider a variety of approaches to this prob- 

lem.    Heuristic approaches useful for large problems and analytic methods 

suitable for small problems will be examined. 
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1. 2     Notation 

The discrete time Markov process with   N   states and with only one 

alternative in each state is specified by a transition probability matrix   P; 

whose element  p.. gives the conditional probability of a transition from i 

to j given that the process is in state i. 

The reward structure xs specified by a reward matrix R whose elemert 

v.. gives the reward earned by th-; process for making a transition from state 

i to state j. 

The steady state probabilities for this process are denoted by a vector 

7T =  ( 7T    ,   n   , 7T    .)   (we assume completely ergotic processes.) 
—~ X Ct IN 

The expected reward on the next  transition,  given that we are in 

state i,  is given by: 

'i= I pij r 

j 

Finally,  the steady state gain,  which is expected reward per transition, 

is: 

g =    ;     Jr.   q 

i 

If discounting is used,   so that the present value of one dollar to be 

received one period in the future is  ß   then the expected present discounted 

value of the infinite stream generated by the one policy process starting in 

state  i is denoted by v . .    Clearly v . depends on the starting state since 

rewards in the near future are the most important.    The column vector, 

v ,  of these values  v . is found from the  P matrix and the  q   vector: 
— l -*■ 



v    =    [   I - ß   P]   _1q 

Now,   let there be  k.  different alternatives in state  i,  for  i = 1, 
l 

2 N.    There are then k . *  k     • • • k  T possible policies under which 

the process may operate.    For each policy there is a P matrix,  a £ 

vector,  and a v   vector.    We denote alternatives with a lower case super- 
k 

script,   so that  p..   is the conditional probability of a transition to state 

j  given that we are in state  i  and operating under alternative  k.    We use 

upper case superscripts to denote policies,   so  ir      is,  the   ir vector for 

policy A. N 

Finally,  the entire  P matrix for the problem has    )      k.   rows,  and 

i = 1 
each entry is an unknown about which we have some prior knowledge.    Be- 

cause we will soon need some precise terminology to distinguish just what 

process we are referring to,  we decide to call this process with unknown 

transition probabilities the primary process,   since it is the primary focus 

of our concern.    We call the entries random variables,  over which we have 

some prior distribution.    This is the Bayesian formulation of unknowns. 

Because the statistics associated with the primary process are random 
^k 

variables,  we write them with a tilde above them.    Thus,   p..  is the unknown 

probability of going to  j  under alternative  k given that we are in state  i. 

These are random variables and each one has some distribution,   we shall 

select such a distribution from a known parametric family.    Thus with each 

random variable is associated one or more prior parameters.    These are 

just numbers,  and for reasons which will become clear in the next chapter, 

we designate the prior parameters  m... 

Later it will be convenient to speak of another process,  whose transition 

probabilities are known exactly and are equal to the mean value of the corre- 

sponding probabilities for the primary process.    We will call this process 
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the expected process.    Because we shall refer to it so often,   statistics 

associated with this process will be written without extra tildes or super- 

scripts.    Thus by definition: 

P..     =    E      p.. 

and  7T.   is the steady state probability of being in state  i   for the expected 

process.    Note that since   it .   is not in general linear in p.. ,  it is not 

necessary that   it.   =   E  ( ir . ). 
J J 

Since the primary process is composed of random variables,  we will 

often find it useful (for   simulation purposes) to draw sample points from these 

distributions to get processes which we will call sample processes.    Statistics 

associated with these processes will be denoted by a presuperscript  s_.    Thus 
s     A ~ 

it.     is the steady state probability of being in state  i  under policy A for^ 

particular sample process   s . 

Thus,  variables associated with the primary process have tildes,  vari- 

ables associated with the expected process have no extra markings,  and vari- 

ables associated with sample processes have a presuperscript  s.    Because 

understanding of the relationship of these various processes is so important 

to what follows,  we conclude this section with a graphical portrait of their 

relationship. 

We have an actual process,  a true state of nature,  but unfortunately, 

we do not know it exactly: 

Actual process 

unknown 
numbers 
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Being Bayesians,   we treat the unknown transition probabilities 
~k 

as random variables,    p.. ,   whose distribution is indicated by a para 

meter  m .. .    Thus: 

primary process 

~  1       ~  1 ~  1 
11 

~  2 
11 

~k 

12 IN 

P 
N 

Nl 

(random variables) 

prior parameters 

1 1 
mll      m12 m 

IN 

m 
11 

m N 
Nl 

(known numbers) 

For convenience in later analysis we define still another process: 

expected process expected process 

~  1 ~  1 
E(Pu)---E(p1N) 

~   2 
E(PU)... 

E(P21) 

(known numbers) 

1 
11 

11   ' * 

1 
IN 

21 

(known numbers) 
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Finally from the prior distribution we can draw: 

sample process 1 

81     1      Sl    1 
Pll P12 

1     2 
Pll 

1     1 
IN 

Sl    kN 
PN1      '• 

(known numbers ) 

sample process 2 

r S2    1 S2    1 S2    1 
11 

2    2 
Pll 

P12   ••      P1N 

S2    kN 
PN1 

(known numbers ) 

sample process 3 

S3    1        S3    1     ..S3    1 
Pll P12 P1N 

3    2 
Pll 

83    kN 
PN1     '• 

( known numbers ) 

^- 



""■■ — "; J™-r -""-■~:~~~~-.-rFrT- ---s™--' -■■r5.^rjäi^.'Sit^-;7.^SpPP^y, *'*     -^%^-r-~saWPjpWjB»ERfa™-  .:-.- 

CHAPTER II 

THE MULTI-DIMENSIONAL BETA DISTRIBUTION 

2. 1      In search of a prior distribution 

The problem we have formulated assumes that there is prior know- 

ledge of the unknown transition probabilities of the primary process,   and 

that this knowledge is to be expressed probabilistically.    We shall now dis- 

play a convenient form in which to express this knowledge. 

Assume that at some moment the system is in state  i.    The immediate 

future of the system can be described as a multi-nomial Bernoulli process, 

That is,  one and only one transition to another state will take place,   and 

that transition will be made according to the probabilities   p..,  j = 1,2. . .. N. 

If we consider only those transitions made out of state  i we have a multi- 

nomial process: 

nl                 n 2 nN 
pr(Ei  I  Pil'  Pi2' 'PiN)=  C'Pil '   Pi2  PiN 

Where  E. is the event of observing exactly n.   transitions from 

state  i to state   1,  n    from i  to  2,  etc.    The conjugate prior for thi^ distribu- 

tion is the multidimensional beta distribution: 

mil _1 m'N_1 

VPil PiN|mil miN)  =  C'Pil       l         PiN 

We shall shortly show that the multi-dimensional beta is an excep- 

tionally convenient form to use for the distribution for  p ., ,   p . _  
ll        i2 

But first it must be noted that use of this prior involves the implicit assump- 

tion that the random variables in each row of the transition matrix are 

independent of the random variables in any other row of the matrix. 
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That this would in fact be the case in any application is not obvious,   and 

in some sense it is even unlikely.    In the example proposed in the introduction, 

a similar type of alternative existed in every state.    If those probabilities were 

unknown,   information about alternative     1   in state   I   might well give us some 

clues as to the transition probabilities for the same alternative in state   2. 

So,   while we shall use the multidimensional beta distribution throughout,   in 

order to keep the calculations simple,  it should be borne in mind that this 

implicit assumption of independence may not be desirable in some applications. 

Throughout this report we shall denote by m      the beta parameters used, 

and shall denote by N .  the row sum of the  m ..: 

N.    =   )     m.. i  =   1,2, .....,N 

J 

"We shall now consider some of the properties of this distribution,  and 

an interpretation for the   m ... 

2. 2     Properties of the multidimensional beta distribution 

We simply list some of the general properties of the multidimensional bet': 

distribution. 

1. The marginal distribution of a particular  p .. is given by: 

f    (p..     m..,  N .  - m..) 

2. The expected value of a particular  p ..  is given by: 
m .. 

P:;     =     E    (   P:       )    = LL 
ij rij N. 

/■v 

3. The variance jf a particular  p..   is given by: 
m.. m   . . 

I      s     LL_   / ! .    ii_ )     1  
Fij N. v N. 'N.+ l 

l li 

=   "p..  ( 1  - P..)   (N. +   1)" 1 

-11- 



4.         Bayes modification of the distribution can b-s accomp'ished by inspec- 

tion.    Let  E  be the event that we observe  f..  transitions i. •   m  i  to j, 

j  =   1,2, N.    Then the posterior distribution is: 

fp (PU'   Pi2 PiN   I   mi!+  £il'  mi? + 'tZ miN
+£iN) 

2. 3     Determination of prior parameters 

The expression for the mean "p..   gives us an interpretation of the 

prior parameters,  and thus an intuitive way of assigning them.    Since 

m ., 
F  (p..)  =   ■ r;—i  ,  we can sD'.cify,  instead of the  m..,   N-l of the mean riJ N. " ij 

values and a value for  N. .    From these statistics,  the prior parameters can 

be calculated.    N.   is some kind of a measure of our certainty,  as we can 
l 

see by noting that the variance is inversely proportional to N. + 1.    E. A. 

Silver (3) notes that good resulto can be obtained by a least squares fit of 

the intuitive marginal variances to a single value  N..    But in most applica- 

tions it is likely that one will not have a good idea of the variances which are 

to be so fit -- so  N.   will remain a somewhat crude measure of   certainty. 

It may help to note that specifying an initial value of N. will yield 

the same result as if we had specfied a uniform prior,  and had taken then 

N. - N observations which happened to yield the same mean values.    So 

that specifying a value of N .,  is in a sense equivalent to having taken 

N. - N observations starting from a uniform prior. 

2. 4      Methods of sampling 

Simulation methods will be used extensively in the following work', 

it is therefore important to have a method of sampling from the beta 

prior.    Ideally,  the prior represents completely our knowledge about the 

state of nature,  so that the actual process is only a    random draw from 

the prior. 

-12- 



We take this interpretation literally,  and test all our heuristics by draw- 

ing many sample processes from the prior and evaluating the heuristics 

with each one of the possible states of nature thus obtained.    The sampling 

procedure is an approximation to the usual Bayesian technique of pre- 

posterior analysis which,   in the examples we shall study,  is an exceedingly 

complex mathematical task. 

E. A.  Silver (3) has shown that to randomly draw from f    ( p j m), 

we can take independent draws (y ..) from the   N  simple Gamia. distribu- 

tions: 
m., m..-i     - q y. 

li !J XJ 
i     (y..   I  m...   q)   =   —£-. r    y   ■ 0<y..<oo 

7       ij ij r(m    )      7ij e ij 

y • s                        li 
and then     p ..   =     *— 

1J      ^  y.- 

j 

If all the  m..  are integral,  the Gamma becomes a simple Erlano-m.. . 

Mosiman (2) shows that to sample from the Erlang-m.. : 
m m   . 

y ..  =          )       |    In r .   |    =   -         )      In r . , 

i=l i=l 

where  r .   is drawn from a rectangular distribution on [ 0,1].    Since we 

divide by     )     y..,  the scale factor  q is irrelevant,  and can be chosen 
L       U 
j 

to keep the logarithms in a convenient range (we use  q =   20. )   To be 

certain that all the  m..  are integral,  we truncate the actual values.   This 

is necessary,  as Mosiman also states that there is no way to sample from 

a general Gamma,   short of using tables of the incomplete Gamma function. 

The subroutine   GEN  in Appendix A  shows a programmed version 

of this sampling routine. 
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CHAPTER HI 

A SPECIAL TWO STATE PROBLEM 

3. 1 The Problem 

We now have a notation for expressing our decision problem,  and 

a prior distribution to encode our knowledge about the unknown transition 

probabilities.    Let us now begin to formulate the general decision problem 

described in the introduction. 

We initiate this task by considering a very simple special case,  pre- 

paratory to the formulation of the most general case in Chapter IV. 

Consider the following two-state discrete time Markov process. 

When in state   1   there is no choice; the transition probabilities are 

(  P,,>   ^17)  =  (   V4»   V4).  and the transition rewards   (r       ,   r      ). 

There are two alternatives when in state   2; alternative   1   having transition 
1 2 12 

probabilities  (  P..,   P00)   =  (1/4,   3/4) with rewards  (r_.,   r~0),  and 
Li. LL Li LL 

alternative   2 having the unknown transition probabilities   (  p71, P79) with 
2 2 

k.iown rewards ( r      , r __ ).    This process can be represented by the follow- 

1/4 
y   '  state 

(3/4. p») 

14- 



~2 ~2 
We assume that the random variables   p       and  p.     are multi- 

bl bib _ 

~2 
dimensional beta distributed.    For simplicity,   we will denote   p 

simply by  p for the remainder of this chapter,   as there are no other 
""2 

unknown probabilities.    (P??   =   1—P)-    We denote the beta parameter 
2 2 2 2 2 

m       simply by  r,  and the parameter   N      simply by  n.   (m       =N_-m     ) 
£1 l- L> L* Lt Lt i 

The decision problem now becomes fo specify for each set of 

parameters  (r, n) whether to follow alternative   1   or alternative  2  in 

state  2. 

3. 2 Formulation by Dynamic Programming 

3. 2. 1    The Dynamic Programming Approach 

The solution of a problem of this type depends upon all possible 

outcomes and all decisions in the future.    The outcome and decision tree, 

however,  is infinite since the process will operate for an indefinitely long 

time.    Discounting reduces the importance of the future,  but we are 

essentially dealing with a boundary value problem with the boundary of 

infinity.    The only technique presently known for solving such a problem 

is that of truncation to a finite outcome decision space.    This finite 

problem can be solved by dynamic programming,  and the size of the 

finite case taken large enough to yield a converging approximation to 

the infinite case.    Usually this must be done numerically,  though it may 

be possible to discover certain analytic properties of the optimum solu- 

tion which enable us to find the optimum by another,   possibly analytic, 

method. 

3. 2. 2.   Terminal Policy 

In order to formulate the problem we will first introduce a 

terminal situation.    Suppose we are given a process which will operate 

for an indefinitely long period of time.    While the process operates we 

must make a decision every time that the process enters any state with 

more than one alternative.    We will observe the outcomes and improve 

our decisions in time.    However,   suppose that at some preknown time 
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we will make a terminal policy decision which will be used throughout 

the remainder of the operation.    This terminal decision policy will 

specify not only an alternative for the state currently occupied,   but 

also alternative decisions for all states which might be entered in the 

future.    The alternative to be chosen at each state is always fixed (i.e. 

the terminal policy is time-invariant. )   Each possible terminal policy 

decision has a terminal value associated with it. 

3.2.3.      The Decision Stage 

The time from the start of the process until the terminal decision 

will consist of a fixed number of decision stages.    One possible choice 

for the decision stage would be the period (holding time) of the process. 

But,  as decisions are only made when in state   2 for this simple process, 

it will be convenient to define the decision stage to be the time between 

consecutive departures from state   2.    This time is random in terms of 

the number of transitions,   but this disadvantage is more than offset by 

the fact that with this choice we know precisely how many observations 

of the transition whose probability is unknown are taken per decision 

stage--precisely one.    Anytime the process enters state   1   it will be 

regarded as having the decision stage number of the next entry into state 

2. 

3.2.4       Dynamic Programming Equations 

At the Oth stage we will choose the policy with the highest expected 
N 

terminal value.    Let   V       (r,n) denote that expected present discounted 

value of the infinitely long income stream from the process given that an 

optimal policy is followed,   the system is in state   2  and  N more decisions 

are to be made before the terminal decision.    This quantity is obviously 

a function of the prior parameters of the unknown  p.      We use a capital V 

for this value function which has prior parameters as arguments to distin- 

guish it from the function lower case  v  which is the value function when 

the probabilities are known.    We can always compute  v from the equations 

|see Chapter I).    v_ =  [ I -   ß P] 

the   0th stage,   we can then write: 

(see Chapter I),    v    =  [ I -   ß P]        q •    Capital   V is another matter.    At 
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/ 
V°    (r,n)=Max    (   v^p'l,      I      v 2  (  P 2 )  £     <  P2  |  r, n) d P 2 } 

P2 

where   P     denotes the square transition probability matrix associated 

with policy  k  (i.e.   follow alternative   k  when in state 2.)    The first term 

inside the bracket is the value,   when in state 2,   of following policy   1.    The 

second term is the expected value,   when in state   2,   of following policy  2. 

N 
We can next write expressions for   V       ( r, n) in terms of similar 

functions for   ( N - 1 ).    Given that we are in state   2  with  N  stages left, 

with probability  p  we will be in state   1   with   ( N - 1 ) stages left,   and with 

probability   1-p  we will be in state 2   with  (N-l ) stages to go.    Taking the 

expectation over   p  ( recall that  p  =   r/n),   we find: 

V^(r,   n)   =Max    {    v _,   ( P * ),    -j~    [   r ^    +   ß   V^'1  ( r +  1,   n+  l)] 

♦(I--*-)   [   r'2+ß   V^Cr.n+l)]   } 

Notice that the first expression inside the braces,   which corres- 

ponds to taking alternative  1,   is a very simple expression.    This is be- 

cause once we decide to follow the alternative with known transition 

probabilities,   we get no new information about the unknown probabilities, 

and therefore there will never be any reason to change our minds about 

following the unknown alternative,  that is,   once we start to follow alter- 

native 1 we follow it forever.    Thus,   the appropriate expression to enter 

for the choice of alternative 1  in our expression,   is simply the present 

value of the income we would get by following that alternative forever. 

This is dei 

Chapter I. 

This is denoted by  v      ( P    ),   and is computed from the equations of 

N 
We can also write an expression for   V     ( r, n ) in terms oi 

N 
V     (r,   n) so that our expression involves only one unknown.    Since state 

1 has known probabilities, 
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V^ (r,n)   = 
Pll   rll+  P12[f12 +  ß   V^(r.n)] 

(1- P  Pn) 

N 
Moreover,   in the equation for   V_   (r,n),  the superscripts are 

superfluous,   since our definition of the decision stage forces   N + n to be a 

constant.    Thus,  the fact that the right side is superscripted (N- 1 ) is already 

conveyed by the fact that the argument is ( n+ 1 ).    So,   we can drop the super- 

scripts and write our dynamic programming equations as: 

V. (r,n)   =  Max    v.   (P1),   [—  (a. + a. V,  (r+1,  n+1)', 

+ (1 ■• — ) (a. + a.   V. (r,n + 1 ))] 
n 5 4       c 

where again v ?  ( P    )  is the value of following the known alternative   1,  and: 

(P11   rll+  P12  r12) al = r2    «               ß 

21 
(I-PPU) 

a2 = 
Pl2ß2 

1-P  Pll 

a3 = 
1 

r22 

a4 = P 

3.3 Knowledge Space 

The function  V     (r,n) is defined over a two dimensional space,   and 

may be plotted in three dimensions.    However,   what is critical for decision 

purposes is the plot of the points where the two expressions in the maximum 

above are equal.    On one side of this boundary,  we will always choose alterna^ 

tive one,  and on ehe other side we will always choose alternative two.    Thus, 

given this boundary,  and knowing which side of it corresponds to alternative 

one,   our decision problem is solved.    Given any state of knowledge ( r,n) we 
-18- 



merely look at our graph and see which alternative to follow.    In the next 

sections,   we will give a method for computing this boundary,   but let us 

first pause to investigate which side of the boundary corresponds to which 

policy. 

Under certainty,  the value as a function of the transition probability 

in state  2, p,  can be expressed as: 

a .   p + a     (1  - p) 
V2  (p)   =  

1   " a2   P " a4  ( * ~p) 

where the  a.   are,   as defined in the last section.    Then: 
l 

d   V2 <aj  -  a3)   (1  -  a4).  a3  (a4   -  a.,) 

2 
dp [  1 - a2  p - a4 ( 1 - p)J 

The denominator of this expression is always positive,   so the 

derivative takes the sign of the numerator,   which is a constant.    That is, 

the value function monotonically increases or decreases as a function of 

p.    Thus,  the policy with known transition probabilities may be above or 

below the boundary,  but this may be determined by inspecting the sign of 

the constant numerator above for any problem.    If the derivative is positive 

the    known    policy would be followed when we had states of knowledge lying 

above the decision boundary. 

3. 4      Numerical Computation Using Dynamic Programming 

Suppose that for some  N and for all   r   we know the values of  V? ( r,ti), 

Inspection of the dynamic programming equations then reveals that we can 

compute the value of  V     ( r,   N - ' ) from these for all   r,   and so on down to 

V     ( r, 0).    This can be done by simple calculation since the 
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entire right hand side of the equation is constant except for values of 

V    ( r,  N) which we assume we know.    Thus,  the entire problem re- 

duces to finding the values along some value  n.    If we were approx- 

imating the infinite case by a finite duration case,   we could just assign 

termination values at some large value of n and iterate back,  but 

finding the termination values discussed in Section  3. 2. 4 is itself a 

very difficult problem.    A much simpler approximation is to say that 

for some large value of n,  say n=1000,   we (virtually) know the value 
r 

of p with certainty as being — .    Thus, 

V    ( r, N)  =  Max  (v^F1),   v      (P2)} 

2 , 
where  P      is the known matrix with  p = r/N. 

We have used this computational device to evaluate the deci- 

sion boundaries.    The use of discounting assures us that if we take  N 

large,  the terminal values assigned there will not make very much 

difference in any case,  and experience has shown that values of N 

around  50  yields results almost identical to values around 1000. 

3. 5 Computation Results 

A computer program was written to find the solution to this 

two state problem.    Its specific objectives were to illustrate the shape 

of the decision boundary,  the speed of convergence with  N (the assumed 

infinity   ),   the sensitivity of the decision boundary to the discount factor, 

and the shape of the isovalue curves in the ( r, n) plane. 

Several problems were run with different values of ß,  P?  and 

N to illustrate these various properties. 

For the first   6 problems the decision boundary points are 

plotted in the (r, n) space (see graphs following).    These are the points 
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where it   is f'rst best to pick the alternative   1   when in state   2.        or 

instance,   in the second problem ( see graph 2 ),   if we had  n = 10, 

r = 8,   we would decide to follow policy  2  in the next transition.    How- 

ever,   if n=10,   r = 9,   we would follow policy   1   in the next transition 

(and hence,     jrever,   since   r  and  n  will not change).    The problems 

and parameters are: 

1) M   .9,  N = 50. Pu=    -\,   p\z  -    -L 

2) p =  .9999, N = 50,  Pn = -1, PX
Z2 = -i- 

3) p.  .9.  N-50,  Pn=   -§-,  P\z  = -§■ 

4) p = .9999, N = 50, Pn =  -|-,   Pz2 = -1 

5) p.   .9.  N-50.  Pu.-i,  P^2    =4 

6) p  =  .9,  N=1000,   Pu = -i,  P\z  =4- 

The purpose of the first   6  cases is to illustrate the shape of 

the decision boundary and how it changes with the value of the discount 

factor   ß.    Notice that for small values of (3 the decision points stay 

very close to the boundary under certainty ( straight lii/e below the points). 

Only for larger   ß,   where the future has great importance,   does the 

boundary move away from the certainty case.    In the limit (as ß  approaches 

one) the boundary approaches the   45     line--experiment forever. 

Comparison of Figure 1 and Figure 6 illustrates the speed of 

convergence with  N  for   ß = . 9.    Figure 6 also shows the asymptotic 

behavior of the decision boundary.    Notice that the decision points remain 

the same for   N = 1000 and  N = 50 except for those near 50.    For N = 1000 

the decision boundary remains parallel to the certainty boundary for as 

-21- 



far out as we have investigated. 

The next series of graphs is concerned with a continuous 

decision bou  dary and isovalue curves obtained by linear interpola- 

tion.    The significance of interpolated values is that if the value 

function   V (r,n) is defined for all r and n,  and is relatively smooth 

and fiat,   then the values can be approximated by interpolation.    Graph 

#7 shows   V (r, n) plotted against r for several values of n.    Apparently 

the value function is indeed smooth and flat enough to justify interpola- 

tion between the values on the lattice.    However,   since at the assumed 

horizon n  is an integer ( = 50 ) and r  is also taken to be an integer for 

decision purposes; the results that follow do not   have much operational 

meaning,  and are helpful only to get a rough idea of the bahavior of the 

value   V     ( r, n). 

The next graph,   #8,   shows the decision boundary found by inter- 

polation for three values of ß.    The significant feature of these curves 

is their    lumpy    nature.    The end points of the lumps occur at integers, 

where decisions could be made. 

The next two graphs show isovalue curves.    Isovalue curves which 

are for values of  V_ (r, n) close to the n-axis appear to be straight lines 

and have a slope which is very close to the slope that the value under 

certainty function has.    However,  they do not pass through the origin when 

extrapolated.    Rather,  they have a small positive intercept.    For isovalue 

curves with values close to the certainty boundary,  though,   the lumpy 

appearance shows up again.    We have not been able to provide a satisfac- 

tory explanation for this phenomenon. 
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3  6 Conclusion 

In this chapter we have considered the exact solution to a 

simple two state case.    We have shown the dynamic programming 

method of solution,  and the numerical solutions for several values 

of the problem parameters.    The conclusions drawn from this work 

are: 

1) When  ß -  . 9 or smaller,   the value under certainty gives 

a good approximation to the value under uncertainty for n 

greater than 15 or 20.    The isovalue lines are displaced 

upward slightly from the isovalue lines of the certainty 

case,  but their slope is undisturbed. 

2) As  (3 is increased from   . 9,  the effects of uncertainty are 

more pronounced.    The decision boundary bulges upward 

and becomes lumpy.    Isovalue lines near the boundary are 

similarly affected,  though those far from the certainty 

boundary remain remarkably straight lines. 

Now that we have considered the nature of an exact solution 

for a simple case,   we will discuss in the next section the difficulties 

encountered in trying to apply this method to even a slightly larger 

problem. 
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CHAPTER IV 

INFEASIBLLITY OF A DYNAMIC PROGRAMMING 

SOLUTION FOR AN N-STATE PROCESS 

4. 1 Terminal Analysis 

We demonstrate the infeasibility of dynamic programming by 

formulating the equations for the general case,  and showing that their 

solution requires a prohibitive amount of calculation. 

As in the special two state example presented in the last chapter, 

we approximate the infinite case by a long finite process with terminal 

rewards.    We calculate the terminal rewards by assuming that we must 

choose a policy at the  0      stage which we will follow forever. 

Exactly as in the two state case we define: 

L,      12                 ki           1                k kN. 
V.    (mH,  m11,...m1,  ,  m12 ...m.. m^) 

as the present discounted value of the infinite reward stream under the 

optimal strategy    given that we are now in state   i  with L  decisions left 

before the terminal decision.    The decision stage is now defined as just 

the period (holding time) of the process,   since a decision must ir. general 

be made in each state. 

This value is obviously a function of all our present knowledge,   so 

all prior parameters appear.    For simplicity,   we denote the matrix of 

prior parameters by  M,  and write   V.    (M). 

Finally,  at the terminal stage we assign a policy,  and the present 

discoun*?d value of a policy given the transition probabilities can be computed 

by the formulas of Chapter I.    So: 

dax I    f 
ill policies A   /    J        i 

V°(M)  =     ^-v   .       .    I v.   (PAW(PA|    M) 
i all policies A  <   J        i p 

A 
P 
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where,   as usual,    v    ( P     ) is the present discounted value of being 

in state i   under policy   A   when   P      is known. 

4, 2 The Recursive Equations 

If we are now in state   i  and following alternative  k  with  L 

stages left before the terminal decisions,   we can go to any atate  j 
^k 

with probability  p.. .    If we go to j,   we earn  r ..  immediately,  but 
riJ L-l 1J 

as   if next period we can expect   V . (M1),   where   M1 is the matrix 
J k 

of posterior parameters given the transition from  i  to  j.    Let  I. 

denote a matrix of zeros except for a single one in the position corre 

spondmg to  m...    Then: 
1J f N 

VL   (M)   =    Max ]E[ y    Pk    [  rk    +  |3  VL_1 (M+Ik )] ] 

J = 1 

^k ' 
This expectation is seen to be linear iti  p.. ,   so we can just use the 

statistics of the expected process.    Thus: 

(      N 
^L  /w\ Max J   k        \ k     ..L-l      Wltk . V.    (M)   = k   U{   +   I    P   Ptj    V. (M+I.,) 

These equations closely resemble the ordinary equations for deter- 

mining an optimal policy with known transition probabilities,   except 

that now  V. (•)  has different arguments on the two sides of tne equa 

tions. 

4. 3 Conclusion" 

There are difficulties inherent in solving both the terminal 

and the recursive dynamic programming equations.    The form: 

,,0   /wx Max    _ r . £A.   |   w, V.   (M)   a E [ v.   ( P    )  I   M] 
1 Al 
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is itself virtually intractable, as it involves a very complex multiple 

integration. But, as will be discussed in the next chapter, h may be 

appropriate to say that: 

E  [  v.   ( PA)   | M]  = v.   ( PA) 

A. 
where  P      is the matrix of policy A  in the expected process.    In this 

case,  the terminal equations could in fact be solved by ordinary policy 

iteration. 

Given  V.   (M) for all values of M,  there is no theoretical 
l 

difficulty in solving the rest of the problem.    The only trouble is one 

N 

of dimensionality.    M is   a  (   )     k.  x  N) matrix,   and the state super- 

j = l 

script  i  can run from   1   to   N.    If we set even so modest a task as to 

tabulate for each integral  m ..   in the interval  (  1, 100),   we find that 

each decision stage involves: 

Nk  . 
N  .   ( 100)    ^ J 

tabulations.    Even for very small problems this is impossible.     For 
24 

example,   our taxicab example would require    3x100        tabulations for 

each decision stage.    To reach convergence would require at Least   100 
50 

stages,   so 3x10        calculations would be required. 

But even though a dynamic programming solution is infeasible, 

it does provide us with a compact formulation of the problem,   and a 
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clear notion of what a solution is.    if we let   L.  grow very large so that 

L   becomes indistinguishable from (L     i ),  then the problem can be 

-•' aled. 

For every possible prior matrix  M and every state   i,   specify 

that alternative   k      such that: 

N 
/ »,» Max   r     k        _    V        k       .,,,,. k , , 

V . (M)   = . q.   +   p    )      p..-V    (M+I..) ] 

j = i 
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CHAPTER   V 

DISTRIBUTION OF LONG RUN AVERAGE GAIN 

5. 1 Steady state probabilities 

One measure of effectiveness for a Markov process without dis- 

counting is the long-run average gain,   which is defined as the sum of the 

products of the immediate rewards by the corresponding steady state 

probabilities: 

g  =    /    \  qi 
i 

Both the q's and the n 's depend on the transition probabilities,   so that in 

the case we are studying,   they are both random variables. 

E. A.  Silver has shown that the  E ( n .)'s can be approximaed by 

the   v . !s of the expected process when the transition probabilities are 
J (3) multidimensional beta distributed. The accuracy of this approximation 

was shown by using simulation techniques.    His results also indicated that 

the approximation became better as the   N. 's increased. 

This result sheds partial light upon our problem,  but does not go 

quite far enough.    Our primary interest is in the product of the 'vi  's with 

the  q 's ,   and it is the behavior of this statistic that we shall study in the 

following sections. 

5. 2 Distrib    ion of gain for a given policy 

In order to know how bad it might be not  to follow the optimal 

policy,   it is useful to have some idea of: 
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a) What the distribution of gain is like for a given policy,  and 

b) How that distribution differs for various policies? 

The second question could be answered by the first if we found the 

distribution of gain explicitly in terms of the prior parameters of the 

policy. 

It is necessary to point out that throughout this chapter we will be 

dealing with terminal analysis; that is,  the same policy will be followed 

forever.    This is a first step towards the analysis of the general problem 

which allows the policy to be changed at any time. 

5.2.1        Simulation runs 

In order to study the distribution of the gain,  a sampling program was 

written.    This program receives as data the prior parameters of a Markov 

process with one alternative in each state (thus there is only one policy; a 

necessary restriction here since gain is associated with a particular policy). 

The program produces sample processes from the prior parameters and 

computes the gain of each sample process.    The range of the gain is divided 

into several intervals and for each interval a count is kept of the sample gains 

in that range.    This provides a histogram of the distribution.    Besides,  a 

sample mean and variance is computed.    (See Appendix A. 14) 

We have studied five particular processes.    The first is a five-state 

process with probabilities and rewards drawn from a random number table. 

The other four were selected policies of the three-state taxicab problem. 

Each time a process was studied,  the prior parameters N.   were the 

same for all rows  (states).    For different computer runs,  different values 

for the  N.   were selected.    Thus,  the behavior of each process was studied 
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for four different values of the  N. :   25,   50,   100,  and 150.    There were 
l 

also three miscellaneous runs.    One was the five-state problem but the 

rewards (which iiad a range of zero to ten) were replaced by their ten's 

complement.    The second miscellaneous process was the regular five- 

state problem,  but with different values of N.   for the various states 
l 

(the average value was  100).     The last run was policy (2, 2, 2) of the 

taxicab problem,  but only 25 sample processeb were drawn to see how 

accurate statistics could be obtained by very little sampling.    There were 

23 runs in all. 

5.2.2    Results of the .c.-nulation 

The sampling experiments described above yielded only limited 

evidence of the system behavior.    The experiments were in most respects 

exploratory rather than aimed at testing any one particular hypothesis. 

Even so,  there are certain results that seem significant enough to be men- 

tioned here.    The following conclusions are substantiated by the accompany- 

ing graphs and tables. 

E.  A.  Silver has shown that the general form for the   TT.'S   involves 
N-l •* N cross product terms in the numerator (for an N  state process),   and 
N N     cross product terms in the denominator.    We originally hoped that for 

large processes,  the law of large numbers might come into play,   and that 

the distribution of the gain would be approximately normal.    This was one 

of the reasons we tabulated a sample mean and variance when plotting our 

histogram. 

a.)       When the distribution of the gain is plotted on probability paper, 

it does approximate the normal for larger processes.    Also,   the larger the 

value of N . ,  the more normal the distribution appears.    The mean and 

variance of the normal are very close to the sample mean and variance com- 

puted.    But,  however encouraging this result,   it should be mentioned that a 

chi-square analvsis    hows quite decidedly that the distribution is not normal 
-39- 



In other words,   the normal is clearly only an approximation.    Since the 
N 

N      terms mentioned above are not independent,  the law of large numbers 

i) et.-d not apply,   even for very large processes. 

b. )      For a given process,   the product of the sample variance and 

the common value of the   N. 's appears to be more or less constant.    This 

suggests that given the constant (which is seen to vary from process to 

process),   we could predict the variance merely by knowing the prior para- 

meters  N.   when they are the same in every state.    Our miscellaneous run 

indicates that the statistics do not change much if the   N.   are slightly 

different--we can just use their mean value. 

c. )      The mean value of the ga.n is approximated well by the gain 

of the expected process,   and this approximation oecomes better and better 

a= the prior parameters  N.   increase.    Tiu.   is an extension of E.A.  Silver's 

•-.•suit that the above is true for the   w .   alone. 
J 

d. )     Sometimes the gain of the expected process is larger than the 

sample mean,  and other times it is smaller.    The two caöes are illustrated 

by the case where we took  10's complement of all rewards.    We have deter- 

mined no a priori way of determining which case will pertain in a particular 

-process. 
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RESULTS OF SIMULATION OF TAXICAB EXAMPLE 

500 sample processes for each simulation 

Policy _N _g_ E (g) Var ( g) N- Var (g) 

2,2,2 25 13.34 

50 

100 

150 

1,2,2 25 13.15 

50 

100 

150 

2,1,2 25 8.81 

50 

100 

150 

2.2.1 25 12.89 

50 

100 

150 

2.2.2 25 13.34 

14.04 1. 3047 32.5 

13.42 • 6399 32.0 

13. 39 . 3401 ?4.0 

13.44 .2458 36.8 

14.04 1.1375 28.4 

13. 31 .6784 33.9 

13.23 . 3098 31.0 

13. 32 .2117 30.4 

8.67 . 1107 2.27 

8. 72 .0504 2.52 

8. 79 .0228 2.28 

8. 79 .0201 3.01 (only 62 
samples) 

13.93 1.2716 31.8 

12.96 . 7494 37.5 

12.93 .4604 46.0 

12.92 . 2688 40. 3 

13. 72 1.5228 (25 samples) 
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RESULTS OF SIMULATION ON FIVE-STATE RANDOM PROCESS 

Number of 
Samples N & 

/■v 

E(g) Var ( g) N- Var (7) 

500 25 4.69 4.60 .0683 1 70 75' 

455 50 4.67 .0365 1 825 

220 100 4.68 .0167 1 670 
>g^E (g) 

500 150 4.69 .0096 1 440 

500 different 4.68 .0155 
ave = 100 

Reversed rewards    case 

500 150 5.38      5.39 .0091 g< E (g) 
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5. 3 Limitations and suggestions for future work 

In concluding this chapter we would like to point out some of the 

limitations of our research into the distribution of the long run average 

gain. 

In the first place,   we have studied a very limited number of 

processes (only five),   and they have been of small size (three-state and 

five-state).    It would be quite desirable to study  nore problems of larger 

size to test the generality of our results. 

Second,   in ail the processes studied (except for one) all the   N. 's 

had the same value,  and only four different values were considered.    A 

few processes with larger   N . 's should be studied,   as well as more pro- 

cesses where the  N. 's for the same process have different values in 
l 

different states. 

Third,   we did not study the effect of different reward structures 

on the same transition probability structure.    Whether the two can be 

separated is a question which should be studied. 

Fourth,   all the processes studied in this section were processes 

with only one alternative in each state.    It would be interesting to investi- 

gate the general case with alternatives.    There would be two ways to 

approach this.    The first would be to take some selected policies and study 

the distribution of the gain for each one separately     ( 1 o some extent,   we 

did this with the taxicab problem.)   Another way would be to take the prior 

parameters for the entire multi-alternative process ar.d tc sample complete 

multi-alternative processes from this.    Each sample prut ess could then be 

solved for the optimal policy,   and sample optimal  gams could be recorded 

(and perhaps also compared against the sample gains of some fixed polii its) 

A good number of sample processes would be needed for this program--many 

times the number of policies (which is itself a very large number). 
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Fifth,  the processes studied have always been completely ergodic. 

L should be interesting to study the behavior of processes with transient 

states,  and/or multiple chains. 

Sixth,  we mentioned before that we could predict the variance for 

larger values of N . ,  given the    constant    product of some  N .  and its 
l l 

variance.    We should note,  however,  that in actual processes when N. 

changed due to observations,  the mean values change also,  so that in 

practice different values of N.   are associated with different expected 

processes.    We have not shown that the    constant    remains constant 

under such operations,  but just what it does do would be an interesting 

question for study. 

5.4        Conclusions 

With a 1 the limitations pointed out in the last section,  it would 

be very presumptuous to state any general normative rules.    However, 

it seems safe to say the following: 

a.)   When the prior parameters  N.  are large enough (and 150 

seems large enough for five state processes),  it is a good approximation 

to assume that the process is known with certainty and that the probabilities 

are given by the expected process.    The value obtained from the expected 

process is almost identical to the sample mean obtained by simulation,  and 

the sample variance is almost negligible. 

b.)   Even when the  N.  are quite small (say 25 in the five state case), 

the gain of the expected process is close (say 1/2 standard deviation) to the 

sample mean,  and the standard deviation is only about  10% of the mean 
- 1/2 

value.    Moreover,  this figure falls as  N . 
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CHAPTER VI 

HEURISTIC METHODS 

6. 1 General considerations 

We have previously discussed the analytic difficulties which lead 

us to a heuristic approach. In this chapter v:~e consider some approaches 

to the problem which are empirical or intuitive in nature, present some 

experimental results, and !Suggest possible extension and generalizations. 

The basis for most of the heuristics is that some sort of trade-off 

is implidt in our problems. On the one hand is the in'lmediate expected 

reward to · ~ earned :£rom the process if we follow the optimal policy of 

the expected process, but on the other hand is the !X>Bsibility of finding 

a still bette:... policy by fur-ther experimentation with relatively unexplot'ed 

alternatives. It will be noted that, with the eJcception of the first and 

simplest heuristic, all of the suggested approaches have one or more para

meters which attempt to measure this tradP, -off. 
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6. 2     Follow optimal policy for expected process 

This is,  conceptually,  the simplest possible heuristic.    After 

every transition we perform a Bayesian modification, of our prior.    Then, 

using the matrix of expected values,   we determine the optimal policy to 

follow for the next transition. 

Obviously,  a single transition is unlikely to greatly effect the 

policy decision,  and it would be expensive to re-examine the policy every 

period.    So for purposes of experimentation,  we chose 50 transitions as 

a convenient and reasonable period for re-examination. 

Since this heuristic seems the one that would naturally be used 

in the absence of some more sophisticated analysis,  it is worthwhile to 

examine it here.    In the first place,  the trade-off between immediate 

gain and information does not exist in this heuristic.    There is no mechan- 

ism which explicitly forces unexplored policies to be observed in early 

stages.    Therefore,  if it should happen that there is some very good policy 

which a priori seemed quite bad,  it is entirely possible that this heuristic 

will never provide the information needed to recognize the policy as being 

better than originally thought. 

On the other hand,  if a policy looks very good a priori,  and happens 

to be not so good after all, the heuristic will quickly reveal this.    Indeed, 

since Bayesian modification of the prior is continually taking place,  this 

not-so-good policy will soon become only second best in the matrix of 

expected values. 

Thus, this first heuristic provides one kind of information,  but not 

another.    If a good policy looks bad,  we may never find this out.    But if 

a Lad policy looks good, this is discovered quickly.    In practice,  even the 

first kind of information may be obtained;  the original best becomes only 
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second best and experimentation begins with an unexplored policy,  which 

may begin to look better.    Moreover,  in exploring a policy,   say [ 2, 2, 1 ] . 

we are also indirectly exploring policies [2,1,1],  [ 1, 2, 2 ] ,   etc. 

We expect then,  that when the true transition probabilities of the 

process are likely values of the prior distribution,  this heuristic method 

should perform very well.    However,  when the true transition probabilities 

are in fact far from the prior expectations,  then the initial policy may 

well be a poor one,  and may even fail to generate the information very 

quickly to indicate that in fact it is an inferior policy. 

This last surmise was verified by deliberately choosing an unlikely 

sample point from a prior distribution,   so that the best policy of the actual 

process looked quite poor,  a priori.    The process and prior are displayed 

as Run 1 in Appendix B.    Note that in 15 iterations 50 observations each, 

the true optimum was never explored or discovered--rather,  the same 

apparent optimum was chosen every time. 

What is needed is an exhaustive verification of the first assertion, 

that in an expected value sense,  this heuristic will provide very satisfactory 

results.    Simulation with a large number of sample points from a very 

large number of priors would be needed to establish the assertion quanti- 

tatively. 

As an example of the type of simulation needed,  and to get some clues 

as to probable outcomes,  we constructed Run 10 (Appendix B 1.2).    Here we 

utilized a prior and rewards drawn from random number tables,  and sim- 

ulated for five sample points.    The results were surprisingly good,  the 

optimal policy of the expected process was almost always the optimal policy 

of the sample process,  or so close to it that we are earning  96 + % of what 

we could have earned with perfect information. 
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This figure seems to be quite satisfactory,  especially as it improves with 

time as our knowledge becomes more complete. 

More simulation of this sort should be carried out. But we turned 

our attention toward heuristics which would meet the challenge of extreme 

points from the prior. 

6.3        A trade-off between immediate reward and information 

We will now establish measures for immediate reward and for in- 

formation,  and we will then explain our proposed trade-off heuristic.    It 

has always been noted that the q.  can be interpreted as immediate expected 

rewards.   And a rough and ready estimate of information inherent in an 

k      Y^       k k 
alternative is  N.   =   )    m ., , the larger  N.   ,  the more information we have 

J 
about the alternative. 

,  r. • k      ,    k        min.       /»Tk We now define the quantity w.   =(q.   -q.       )   Q/N..    Here   a 
I» 

is the trade-off constant.    The so defined w.   is large when either 1) the 

relative immediate reward is great,  or 2) the current information is scant. 

Thus,  our heuristic is to choose a policy by maximizing w.   in each state. 

We then observe under that policy for a number of transitions  NOBS which 

is proportional to the smallest of the  w.   in the policy.    That is,  if the 

relative immediate rewards are all very great,  or the current information 

in each state is very small,  we observe for a long time:   NOBS = ß • w 
min 

This heuristic is displayed as  MAIN 2 in Appendix A. 

Our experience with this heuristic indicates that the parameters a 

and P are quite problem-dependent,  and that the policies selected are very 
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sensitive to changes in either parameter.    For a solution to our sample 

problem using this heuristic see Runs 2, 3,  and 4 in Appendix B. 

6. 4        Weighted immediate reward technique 

k k 
In this heuristic,  we weight each q.   by a factor  c .   before apply- 

ing the policy iteration algorithm for finding the optimal policy.    The 

weighting factor is similar to the one used in the previous section.    Now: 

k       .        k   .    k, 
c ;    =  (o q. /N. )+ 1 

Note that as the number of observed transitions becomes very large, 
k 

the weighting factor  c .   approaches 1,   so eventually we converge to the 

optimal policy of the expected process. 

Having found the optimal policy by this technique,  we observe under 

the determined policy for a number of observations  NOBS calculated to 

bring the  c .   down as low as the minimum such value in the state.    This is 
l 

done to minimize the chances of simply re-determining the same policy. 

To be explicit,   NOBS for the policy A is chosen to be   )   x. ,  where the 

x .   satisfy: i 
A 

min       k                   l , 
.        c .    =    ;      for all  l 
k l T.T A _L N .  +  x . 

l l 

It may be that x. = 0 for some  i,  which means that the  c .   associ- 
l l 

ated with the optimal policy is already the lowest in the state.    If a given 

alternative appears in the optimal policy in spite of having the lowest weight 

ing factor,  then it must be a very good policy indeed.    So,  in this c»se we 

set x . =  3 ♦ N .       That is,   if this good ] 
li 

back it up,  we observe for a long time. 

set x. =  3 *N.       That is,   if this good policy has a lot of information to 
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Runs   5-9  listed in detail in Appendix B,  were made using various 

values for   a   and  ß.    In all cases,   we eventually converge on the expected 

optimum,   since the weighting facto* •> approach  1.    But hopefully,  this 

heuristic will also handle extreme points from the prior.    The problem 

then becomes a speed of convergence to the optimum. 

To get a measure of speed of convergence,  we define an efficiency 

by 
~       Expected actual earnings 

Expected optimum earnings 

Plots of efficiency versus accumulated number of observations are 

given in Appendix B. 3 for different values of a   and  ß. 

It can be seen from these graphs that convergence is not terribly 

rapid.    If a small discount factor were operative,  this convergence could 

be quite unsatisfactory. 

6. 5        Weighted variance technique 

This heuristic is a direct attempt to measure the trade-off between 

immediate gains and information.    As our measure of information,  we turn 

to an analysis of variance. 

We first look for an expression for the expected decrease in the 

variance of the marginal distribution of a p..  if we make one observation 
k of the process let us denote this quantity by   d.. .    This quantity gives 

J 

some idea about how much will be learned about a particular transition 

probability if we observe one transition.    But some transitions are more 

important than others; namely,  those with high rewards.    (This is only a 

first approximation,  as those which put us in states with high expected 

returns are also important).    Thus,  we weight each d.     by the correspon- 
k k i1^ 

ding   r ..   to obtain a row sum s .        This we call the   total weighted 

pxpected change in variance,    and assert that it is a dollar measure of 

information to be gained. 
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Next,  we ask how we can measure the    cost of obtaining informa- 

, ion.  '   Suppose we want to observe a particular alternative k in state 

i.    Let  0  denote the optimal policy for the system,  and A denote the 
0        A 

best policy which uses alternative  k in state  i.    Then g    -  g     provides 

a measure for the expected loss from experimentation. 

Then we can state the working of this heuristic:   for our present 

system state we find the alternative which maximizes  s . ;  that is,  the 

state with the greatest expected information gain.    We then find the cost 
0       A 

of experimenting by computing the approximate  g    - g    ,  and compare 

a weighted value of s .   to this difference to decide whether to use the 

optimum alternative of the expected process,   or whether to experiment 

to gain information with alternative k. 

We have now to define the quantity d.. ,  that is,  the expected 
J 

decrease in variance from one observation.    We first recall the Bayesian 

theorem that 

meaii of posterior variance + variance of posterior mean = prior 
variance 

prior variance - mean of posterior variance = variance of posterior 
mean 

The left hand side of this equation is precisely what we mean by d .. ,   so 

that 

d ..   =   variance of posterior mean 

This is a general result,  true for any distribution and for any amount of 

sampling.    Let us consider the case at hand, a multidimensional beta and 

one sample.    Then the posterior mean is: 
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k     , m ..    +  r 

Nk +   1 
l 

where r  has a beta-binomial distribution.    The required variance is: 

, k           m ..    ( N .    -  m ..) 
dij  =   -M i y— 

(N*)2 (NS  l)2 

Thus,   s .   is defined by: 
r 

s 

N 
k 1 V k    .    k k .     k 

m..    (N.    - m .. ) r .. I 
(N^)2 (NS 1)*     j = l 

Again we mention after each transition, this calculation must be 

made for the state currently occupied to determine whether to use the 

optimal or experimental alternative. 

It should be noted that this is also a convergent scheme in that 

eventually all of the variances go to zero,  so we always follow the    optimal 

rather tian the experimental alternative. 

6. 6        Suggestions for future heuristics 

Unfortunately, most of the experimentation with the heuristics 

discussed in this chapter took place early in the project--before we had 

a clear idea of just what information we wanted to get from our simulations. 

From our present point of view,  we can suggest several further experiment? 

which should be performed: 

1.)        An "expected value" evaluation of the first heuristic (follow optimal 

policy for expected process) must be developed.    This will involve applying 
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the heuristic U many random draws from the prior to measure its 

effectiveness. 

2.) We feel that heuristics   2 and  3 are inferior because their para- 

meters are too problem dependent.    However,   it may be that if a class 

of problems is to be solved,   it would pay to get values for the parameters 

for some members of the class,  and use these values for all members 

of the class.    When appropriate parameters are used,  convergence is 

very good,  but we are in doubt as to whether that is a prior or posterior 

fact:   did we perhaps just find parameters which happen to give good 

results given both our prior and the sample points? 

6. 6. 1    A possible heuristic 

The investigation on the distribution of the average long-run gain 

described in the last chapter has given rise to a heuristic which we have 

not yet tested, but which looks like it might be effective. 

Recall that the limitat on in following the optimal policy of the 

expected process was that we considered only immediate rewards,  and 

not the possibility of gaining information.    We consider now using a 

modification of policy iteration to find,   instead of only the optimal policy 

of the expected process,  the   10 best or so.    We could then use simulation 

or the predictive results of the last chapter to estimate both the mean and 

variance of the gain for each of these policies.    This would give us measures 

of both immediate gain and uncertainty,   so a trade-off could be established 

between them.    There is much to be learned about a high-variance policy, 

and much to be gained from a high-mean policy. 

It might also be wise to check for excessively high variances before 

entering the above routine,  and force tests to eliminate any such. 
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As is demonstrated in Appendix C,  it is impossible to modify the 

policy iteration method to produce the   10  best policies; but Appendix C 

continues to present an approximation procedure xor finding N of the 

best policies in an N state process. 

There are several experiments which we can suggest as useful 

for evaluating this heuristic: 

1.) By simulation,  explore how much actual overlap there is in the 

range of g for different    good     policies.    That is,  would a    second best 

policy have a good chance of having a large percentage of its values of 

g being above the  g   oi the best policy? 

2.) Check by simulation whether for two policies A and B, the relation- 

ship between E {g) and E ( g*    ) is indeed similar to the relationship 
A B 

between g     and   g     .    If this is not the case, knowledge of the     10 best" 

policies of the expected process does not tell us anything about the   *J0 

best   of the primary process.   Our previous experimentation with distri- 

bution of gain suggests that the required relationship will hold. 

2 
3.) Check,  low g and high <r     ,  whether  g is equally likely to increase 

ft 
or decrease.    If it should happen to decrease more often than increase 

(which could be a structural property of this type of process),  experimenta- 

tion with high-variance policies might not be as good an idea as it appears. 

On heuristic grounds, this technique seems to be sound.    We 

conclude with a summary of the technique, and a suggestion that it be 

evaluated: 

1.)      Find N  best policies 

2.)      Determine mean and variance of the gain for each policy. 

3.)      Choose a policy by maximizing a weighted sum of mean and 
variance. 

4.)      Use that policy for a while; then up-date prior and repeat. 
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CHAPTER VII 

CONCLUSION 

The most basic conclusion which emerges from our research 

and experimentation is that the expected process gives a surprisingly 

good picture of the primary process.    Even for relatively small values 

of the parameters  N.,  the basic statistics of the expected process are 

good approximations to the expected values of the corresponding statis- 

tics for the primary process. 

This result lends experimental justification to the most natural 

approach to the problem. In most current applications, the transition 

probabilities are not known with certainty anyhow; and some sort of 

Dest estimates    are used.    The Bayesian analysis only suggests a 

formal way of providing these best estimates,  and for up-dating them 

in time. 

Still,  far more simulation experience is needed before these 

conclusions can be stated with certainty.    It may still be that extreme 

points from the prior will present enough difficulty so that the expected 

process approach will not be good in an expected value sense.    If 

further research should indicate that this is the case,  then the heuris- 

tics dealing with variances as well as means would become more 

relevant, and would have to be carefully evaluated. 

It appears at present that an exact solution to the problem is not 

feasible.    Some sort of approximation procedure will be necessary to 

handle any good sized problem,   and the remaining question is only: 

which approximation is best? 

Finally,  there is the matter of relative cost of obtaining solutions 

In this regard,   it is significant that the expected process cechnique is so 

easy to apply.    Essentially,   it involves only policy iteration,   which 
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Dr.   R.  A.  Howard has shown to be quite practical even for problems 

with  50   states and  50  alternatives in each state. 

Thus,   it seems that heuristic methods provide a feasible and 

useful mean of dealing with Markovian decision processes with un- 

certain transition probabilities. 
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APPENDIX A 

DETAILS AND LISTINGS OF COMPUTER PROGRAMS 

A. 1     General Description 

Our project called for the testing of many different heuristics, 

and to facilitate this task,   we decided to write our computer programs 

in blocks,   using the subprogram feature of 7090   FORTRAN.    Each block 

was designed as an independent unit,  fulfilling a particular task.    Then, 

design of a new heuristic merely required writing a short program to 

couple these blocks appropriately.    Briefly,  the subprograms are: 

IPUT: 

VALUE (L): 

ITER(L): 

OBS (NOBS): 

ISIM(IPRES): 

OPUT(I, N): 

PRIOR: 

GEN: 

Reads in an entire process ( prior parameters and 
rewards ). 

A programmed version of R.  A.  Howard's policy 
iteration algorithm.    Used to find optimal policies 
and gains. 

Used in conjuction with  VALUE. 

Simulates  NOBS transitions of the process and up- 
dates the prior accordingly. 

Called by OBS,  this subprogram merely simulates 
a single transition and reports tne outcome. 

Causes the printing of results. 

Restores the original prior in place of a posterior. 
Reinitializes between runs. 

Draws a random sample point from the prior distri- 
bution. 

We now turn to a more detailed account of the subprograms and 

the   MAINS  used to tie them together. 

59- 



A. 2    Subroutine  IPUT 

The source statement  CALL IPUT  causes the following cards to 

be read in: 

1. )     NS,  or number of states in format  12. 

2. )     NA(I),  or the number of alternatives in each state,  in format 
12,   3X,  12,   3X,  etc. 

3. )     Cards with the prior distribution.    Seven entries per card,   10 
columns per entry.    First the P (I, J), then N. (all in floating 
point). 

4. )     Cards with the rewards.    Seven entries per card,   10 columns 
per entry. 

The program stores the values in the proper locations, computes 

the q. values, and checks that all probabilities add to one. If an error 

is found,  the message 

PROB NOT  =  1   IN ROW 

prints,  and the program terminates.    The prior is stored in its workiug 

matrix, but also in OPR for reinitialization. 

A. 3    Function VALUE (L) 

This function is called by a source statement of the form 

GAIN =  VALUE (L) 

If L = l,  it computes the relative values  v.  for the actual probabilities 

under the current policy. 

L = 2,  it computes the relative values v.  for the actual probabilities under 

the optimal policy. 

L=3,  it computes the relative values v.   for the prior probabilities under 

the current policy. 
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L = 4,  it computes the relative values  v .  for the prior probabilities 

under the optimal policy. 

L = 5, computes the q.  values for both actual and prior probabilities. 

GAIN,  which is the long run expected gain associated with the 

computed values  v . ,  is returned as the functional value.    If an optimal 

policy is computed,  it is left in the K(I) vector of common storage. 

The values are always left in the  V(I) vector of common storage. 

Thus,  for example, the stafement GAIN = VALUE (4) would 

cause the optimal policy of the expected process,  along with its values 

and gain, to be computed. 

A. 4       Function ITER (L) 

This subroutine is called by the  VALUE subprogram,  and 

corresponds to the    policy improvement    phase of R. A. Howard's 

algorithm. 

If L = 1,   it improves the policy assuming actual probabilities. 

L = 2,   same as L = 1. 

L  =3,  it improves the policy assuming prior probabilities 

L  = 4,  same as  L = 3. 

L  = 5,  it chooses an initial policy for the actual probabilities by 

maximizing q.  in each state. 

L = 6,  it chooses an initial policy for the prior probabilities by 

maximizing q.  in each state. 
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It is called by a source statement of the form 

IOPT   =    ITER (L), 

and IOPT  is returned as   1  if the policy did not  change (optimum found),  and 

as  2 if the policy did'change ( optimum not yet found). 

A. 5     Subroutine OBS (NOBS) 

This subprogram is called by a source statement of the form, 

CALL OBS (NOBS) 

It simply causes NOBS transitions to be simulated using the actual 

probabilities,  and the frequencies to be tallied.    After the observations 

are completed,  the subroutine performs a Bayesian up-dating of the 

prior before returning control to the main program. 

A. 6     Function ISIM (IPRES) 

This function is called by the  OBS subprogram,  and it is this 

subroutine which actually does the simulation of transitions.    A random 

number is drawn fi om a retangular (0,1) distribution,  and this random 

number in conjuction with the transition probabilities determines a 

transition.    The new state is reported back to CBS,  and the latter program 

records it,  etc. 

A. 7    Subroutine  PRIOR 

This subroutine simply reinitializes the prior matrix,   and calls 

GEN to supply a new sample process.    PRIOR is the recycle point of all 

the  MAINS. 

A. 8    Subroutine OPUT  (h N) 

This subroutine performs several different functions,   since many 

types of output are needed.    Ostensibly,  I is the iteration number,  and N 
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is the number of observations in the iteration.    If both I and N are 

non-zero,  normal output results.    Normal output consists of the follow- 

ing: 

1.) The iteration number  I 

2.) The number of observations  N 

3.) The estimated gain,  or gain of process using prior probabilities 

and current policy.    The program assumes that this quantity has been 

computed and is in the common storage location GAIN. 

4.) The actual gain of the current policy.    This is computed by the 

OPUT  subroutine from the actual probabilities before printing. 

5.) Accumulated number of observations.    A quantity computed by 

OPUT. 

6.) Efficiency.    This too is computed by OPUT, and is defined by, 

Previous accumulated profit + (no.obs.)x (actual gain) 
(Optimal actual gain of process)x(accumulated no.  of obs.)   ' 

where the numerator becomes the new previous accumulated profit.   The 

optimum actual gain of the process is known by OPUT (see below). 

7.) The current policy being followed.    This must be in the  K(I) vector 

when OPUT  is called. 

The source statement CALL OPUT (I, N) causes a single line with this 

information to be printed,  if both I and N are positive.    But,   I can also 

serve two control functions: 

1 = 0: 

This causes the process information to be printed.    The prior, 

reward,  and actual probabilities matrices are all printed,  and control 
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is immediately returned to the main program. 

KO 

This causes initialization preparatory to a new run.    The actual 

optimum gain is computed and stored for later use in computing efficiency. 

Then a header is printed to identify later output.    Finally,  a line identi- 

fied as iteration 0  is printed in which:   estimated gain = actual gain = 

optimum actual gain of the process.    The policy indicated is the optimal 

policy,  and all other quantities are zero.    The output from this section 

lcoks like: 

RUN NO. 

II     NO OBS     EST GAIN      ACT GAIN     ACCUM OBS    EFF    POLICY 

0 0 (actual optimum gain) 0 0    (actual optimum 
policy) 

There is a special OPUT program for  MAIN 4 which gives slightly 

different output,  and computes  EFF on the basis of actually observed re- 

wards. 

A. 9        Subroutine  GEN 

This subroutine is called by a source statement of the form 

CALL GEN 

The statement causes a sample process to be drawn from the prior and 

placed in the    actual probabilities    locations.    The  q.  values are computed 

by GEN,  and control is returned to the main program. 
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The sampling is done according to the method outlined in section 

2.4.    As mentioned there,  trucation is used to assure that all parameters 

are integral,  or else simulation would not be possible. 

A. 10     MAIN I 

This is a programmed version of the first heuristic described in 

Chapter 6:   follow optimal policy for expected process.    It needs a 

parameter card with the following items: 

1.)      IPRES,  present state of system (initial),  in columns 1-2. 

2.)      NOBS,  number of observations between recomputations of policy, 

in columns 6-8. 

3.)      NOITS,  number of iterations for each sample process,  in columns 

12-14. 

4.)      IRUN,  run number,  in columns 18-19. 

The process information should follow this card { see IPUT). 

A process is generated and simulation for  NOITS iterations of 

NOBS observations each.    Then a new process is generated,  and so forth. 

There is no provision for termination of the program,  we just run until 

running out of time. 

A flow chart follows. 
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A. 11      MAIN 2 

This is a programmed version of the second heuristic described 

in Chapter 6,  a trade-off between immediate rewards and information. 

The following parameter card is expected: 

1.) IPRES,   -nitial state of system,   in columns 1-2. 

2.) IRUN,  the run number,   in columns 6-7. 

3.) NOITS,  the desired number of iterations,  in columns 11-12. 

4.) ALPHA,  ( see Section 6. 3) in columns 16-20. 

5.) BETA,  ( see Section 6. 3) in columns 24-28. 

The process information follows this card ( see IPUT). 

A process is generated,  and simulation for NOITS iterations. 

Then a new process is generated,  etc.    No termination is provided for-- 

program runs until stopped. 

A flow chart follows. 

A. 12     MAIN 3 

This is a programmed version of the third heuristic described in 

Chapter 6,  weighted immediate reward technique.    The parameter card 

contains: 

1.) IRUN, the run number,  in columns 1-2. 

2.) IPRES,  the initial state of the system,  in columns 6-7. 

3.) NOITS,  the desired number of iterations,   in columns 11-12. 

4.) ALPHA,   (see Section 6. 4) in columns 16-20. 

5.) BETA.  ( see Section 6.4) in columns 24-28. 
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The process should follow ( see IPUT). 

A process is generated and simulation for  NOITS iterations occurs. 

Then a new sample process is generated,  etc.    No termination is provided 

for. 

A flow chart follows. 

A. 13      MAIN 4 

This is a programmed version of the fourth heuristic descrr   ei in 

Chapter 6:   the weighted variance technique.    The parameter card ct.uains: 

1.) IRUN,  the run number,  in columns 1-3. 

2.) IPRES,  the initial state of the system,   in columns 7-9. 

j.) NOITS,  the desired number of iterations,  in columns 13-15. 

4.) GEE ( see Section 6. 5),   in columns 19-28. 

The process information follows the parameter card ( see IPUT ). 

A sample process is generated and simulation for  NOITS iterations 

occurs.    Then a new sample process is generated,  etc.    No termination 

is provided for. 

A flow chart follows. 

A. 14     Distribution of gain 

This is a programmed version of the algorithm discussed in 

Chapter 5.    The first data card must be a parameter card: 

1.) IRUN,   run number,   in columns 1-3. 

2.) MAX,  or maximum number of sample points,  in columns 7-10. 

3.) MTIM,  in columns 14-17. 
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MTIM is used in conjuction with the MIT clock-interrupt,  and 

specifies the latest time at which sampling should end and output begin, 

measured from the termination time of the program.    If MTIM is set 

at less than 200,  it will insure that no output is lost by running over- 

time,  while it will not interfere with normal running if overtime would 

not occur. 

The program reads only one parameter card,  but after each out- 

put it returns to read the information for another process.    So,  by 

stacking the information for several processes behind the parameter 

card,  any number can be investigated. 

NOTE:   Since gain refers to a policy,  the process supplied 
must have only one alternative per state. 

A flow chart follows. 

A. 15     Solution of the special two-state problem 

This is a programmed version of the solution routine described 

for a two-state process in Chapter 3.    It requires three data cards. 

1.) BETA and NMAX,  the value to be taken as infinity. 

2.) The known probabilities  P ( 1, 1 ), P( 1, 2), P( 2, 1 ), P( 2, 2). 

3.) The rewards for the known and unknown alternatives: 

R(l,l), R(l,2), R(2, 1), R(2, 2), R(3,l), R(3,2) 

All entries are 10 columns each,  floating point,  except  NMAX which is a 

5 position integer. 

The program prints a column of values for each n <  50, 0<r^n. 

When all columns have been printed,  a summary chart of the decision 

boundary is printed. 
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A. 16  PROGRAM LISTINGS 

SUBROUTINE IPUT 
C     SUBROUTINE FOR DATA INPUT 
C 

DIMENSION NA(16 ) »K U5 ). AP ( 150 .16 )»R(150.16)»P<150.17)»W(15.16) 
DIMENSI ON V(15)♦WORK 2<15).AU5»15) 
DIMENSION OPR(150»17) 
COMMON OPR 
COMMON  NA.K.AP.R.P.W.V.NS.IPRES.GAIN.IRUN 
EQUIVALENCE  (A»W)»(W<226).WORK2) 
READ 12. NS 
READ 12. (NA( I)» I«1,NS) 
NUM = NA(1) 
NAU) * 0 
DO 5  I-ltNS 
NX * NA(I+1) 
NA(H-l) « NUM 

5 NUM = NUM ♦ NX 
NL » NS ♦ 1 
N » NA(NL) 
DO 6  I »1»N 

6 READ 11. (P(I.J). Jxl.NL) 
DO 7  I«1»N 

7 READ lit (R(I.J). J*1»NS) 
DO 8 I»1.N 
DO 8 J*ltNL 

8 OPRU,J)*P(I.J) 
DUM « VALUE(5) 

11 FORMAT (7F10.6) 
12 FORMAT ( I2.UOX.I2) ) 

DO 15  1*1.N 
SUM * 0*0 
SUM2 = 0.0 
DO 14  J*1.NS 

14 SUM « SUM + P(I.J) 
ERF » .0001 
IF (ABSF(l.-SUM)-ERF) 15.18.18 

15 CONTINUE 
RETURN 

18 PRINT 19. I 

19 FORMAT (21H1PR0B NOT - 1 IN ROW .12) 
CALL EXIT 
END 
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FUNCTION  VALUE(L) 
VALUE SUBPROGRAM   10-16-63 
DIMENSION NA( 16) .K( 15) »AP(150.16) »R(150.16)»P(150.17) »W(15.16) 
DIMENSION V(15)»WORK2(15)»A(15.15) 
DIMENSION OPR(150.17) 
COMMON OPR 
COMMON  NA.K.AP.R.P.W.V.NS.IPRES.GAIN.IRUN 
EQUIVALENCE  (A.W) . (W(226).WORK2) 
I OPT = 2 
NSM*NS-1 

7 GO TO (1.1.2.2.3) »L 
1 DO 4 1 = 1.NS 

LL*NA(I)+K(I) 
WORK2(I)=AP(LL»N5+1) 

5 DO 4 J=1.NSM 
^ A( I.J) * -AP(LL.J) 
6 DO 8 I-l.NS 

A( I.I) * A( I »I ) + 1« 
8 A(I.NS) * 1. 

CALL LINEAR EQUATION SOLUTION ROUTINE 
SCALE = 1. 
M ■ XSIMEQF(15»NS»l»A»WORK2»SCALE.V) 

9 GO TO (10.11.1D.M 
10 DO 12 I*1»NSM 
12 V( I) * A(1.1) 

V(NS) * 0. 
VALUE « A(NS.l) 

13 GO TO (14.15.14.15).L 
CALL ITERATION ROUTINE 

15 IOPT = ITER(L) 
16 GO TO (14.7).IOPT 

IF L = 3 OR 4. GO HERE 
2 DO 17 I-l.NS 

LL*NA(I)+K(I) 
WORK2U) * P(LL.NS+2) 

18 DO 17 Jal.NSM 
17 A(I.J) » -P(LL.J) 

GO TO 6 
IF L-5.COME HERE 

3 NSM » NA(NS+1) 
19 DO 20 I-l.NSM 

AP(I.NS+1) *0. 
P(I.NS+2) « 0. 

21 DO 20 J»1.NS 
APU.NS + 1) « AP(I»NS + 1) + AP( I.J)*R(I.J) 

20 PU.NS+2) * PU.NS+2) + P(I»J)*R(I»J) 
VALUE » 0. 
FREQUENCY 7(1.1.1.7.1).1(15).5(15).6(15)»9(1.0.0).10(15) 
FREQUENCY 13(1.1.1.7). 16(1.5).2(15).18(15).19(15).21(15) 

14 RETURN 
ERROR EXIT 

11 PRINT 30 
30 FORMAT (23H NO SOLUTION FOR VALUES) 

CALL EXIT 
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FUNCTION  ITER(L) 
C     ITERATION SUBPROGRAM   10-16-63 
C 

DIMENSION NA(16)»K<15)tAP(150»16).R(150»16)»P(150.17)»W(15»16) 
DIMENSION V(15)»W0RK2(15),A(15.15) 
DIMENSION OPR(150.17) 
COMMON OPR 
COMMON  NA»K,AP,R,P,W»V.NS,IPRES.6AIN,IRUN 
EQUIVALENCE  (AtW)»(W(226)»WORK2) 
ITER « 1 

2 DO 1 I=1.NS 
TEMP = -99999. 
NTEMP » 0 
IMIN * NA(I) +1 
IMAX « NA(I + l) 

3 DO 15  MMMINtlMAX 
5 GO TO (6.6.7.7.8.9).L 
6 TEST = AP(M,NS+1) 

10 DO 11  J«1»NS 
11 TEST • TEST ♦ AP(M,J)*V(J) 

GO TO 12 
7 TEST = P(M,NS+2) 

14 DO 13 J-l.NS 
13 TEST « TEST + P(M.J)*V(J) 

GO TO 12 
8 TEST m   AP(MtNS+l) 

GO TO 12 
9 TEST * P(M,NS+2) 

12 IF (TEST-TEMP) 15.16.17 
16 IF (NTEMP - K(I) ) 17.15.17 
17 NTEMP = M-NA(I) 

TEMP * TEST 
15 CONTINUE 
18 IF (NTEMP - K( I)) 19.1.19 
19 ITER » 2 

K(I) « NTEMP 
1 CONTINUE 
RETURN 
FREQUENCY  2(15).3(13).5(1,1,60.60.1.20).10(15).14(15).12(10.0.10) 
FREQUENCY 16(1.1.1)»18(1.2,1 ) 
END 
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SUBROUTINE OBS(NOBS) 
C     SUBROUTINE FOR OBSERVING THE PROCESS AND FOR 
C        UPDATING THE ESTIMATED PROBABILITIES AND THE Q'S 
C 

DIMENSION NAU6) »K< 15 ) tAP( 150t 16) >R( 150. 16 ) tP (150.17 ) »WU5» 16 ) 
DIMENSION V(15).WORK2(15)»A«15.15) 
DIMENSION OPR<150.17) 
COMMON OPR 
COMMON  NA.K.AP.R.P.W.V.NS.IPRES.GAIN.IRUN 
EQUIVALENCE  <A.W)♦<W(226)»WORK2) 
NS1 • NS + 1 
DO 2  I«1»NS 
DO 2  J=1»NS1 

2 W(I,J) « 0.0 
DO 3  1*1.NOBS 
INEXT = ISIM(IPRES) 
W( IPRES.INEXT) « W(IPRES.INEXT) ♦ 1.0 
W(lPREStNSl) * WUPRES.NS1) + 1.0 

3 IPRES « INEXT 
DO 6  I=1.NS 
IF (W(ItNSD)  1.6.4 

C     COMPUTE NEW Q(I) 
4 IP = KID + NA(I) 

OLDEN = P(IP.NS1) 
PIIP.NS+1) - OLDEN + WU.NS1) 
PUP.NS+2) « 0.0 
DO 5 J*1.NS 
P(IP.J) *<PUP.J)*OLDEN + WlI.J))/P(IP.NS+1) 

5 PUP.NS+2) = P<IP»NS+2) + P(IP»J)*R(IP»J) 
6 CONTINUE 

RETURN 
1 PRINT 501 

501 FORMAT (10H ERROR 501) 
CALL EXIT 
END 
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FUNCTION ISIMUPRES) 
C 
C     SIMULATE ONE OBSERVATION 
C 

DIMENSION NA(16)»K(15)tAP<150 * 16 ) .R<150i16)»P<150.17)#W(15*16) 
DIMENSION V(15).W0RK2(15)»A<15»15) 
DIMENSION OPR<150..17) 
COMMON OPR 
COMMON  NA,K*AP.R»P*WsV.NS»IPRE5.GAIN.IRUN 
EQUIVALENCE  (A*W ) ♦(W(226)»WORK2) 
IP - K(IPRES) + NA(IPRES) 
AA * RANNOF(X) 
DO 2  J*1.NS 
AA « AA - AP(IP*J) 
IF (AA)  3t3.2 

3 ISIM * J 
GO TO 5 

2  CONTINUE 
ISIM * NS 

5 RETURN 
END 
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SUBROUTINE OPUT(I.N) 
C     OPUT 3  ONE LINE OUTPUT 
C     I IS THE ITERATION NUMBER 
C     N IS THE NUMBER OF OBSERVATIONS IN THE ITERATION 

DIMENSION NA< 16) .K (15 ) t AP ( 150 • 16 ) .R(150.16)»P(150.17)»W(15t16) 
DIMENSION V<15),WORK2(15),A(A5 • 15 ) 
DIMENSION OPR(150tl7) 
COMMON OPR 
COMMON  NA,K,AP,R.P,W,V,NS»IPRES.GAIN.I RUN 
EQUIVALENCE  (A ,W)»(W(226)»WORK2) 
DIMENSION HOLDU5) 

C 
IF (I)  52.3,2 

C     It    1*0, PRINT MATRICES 
3 PRINT 501.IRUN 

501 FORMAT (8H1RUN NO ,14) 
C     PRINT ACTUAL PROBABILITY MATRIX 

PRINT 505 
5C5 FORMAT (26H1ACTUAL PROBABILITY MATRIX) 

LA*1 
13 PRINT 506,(L,L=1.10) 

506 FORMAT (6X,10(6X,J2)♦5X»3HOBS»1IX,1HQ) 
DO 9 L=1»NS 
MAX « NA(L+1)-NA(L) 
DO 9 KA«1»MAX 
IP <= NA(L)+KA 
GO TO (6,7,8)»LA 

6 PRINT 507,L,KA,(A (TPtJ)tJ«ltNS  ) 
507 FORMAT (1H0,12.1H,12,2X,10F8.4/(8X,10F8.4)) 

PRINT 531, APUP.NS + 1) 
331 FORMAT (1H+»99X,F10.4) 

GO TO 9 
7 PRINT 513»L,KA,(R(IP,J)»J«1»N$) 

513 FORMAT < 1H0,12.1H,12,2X»10F8.2/<8Xt10F8.2)) 
GO TO 9 

8 PRINT 507,L,KA,(P(IP,J),J«1,NS   ) 
PRINT 520, P(IP,NS+i;,P(IP,NS+2) 

520 FORMAT (1H+,88X,F10.0,IX,F10.4) 
9 CONTINUE 

GO TO (10,11,12) » LA 
C     PRINT REWARD MATRIX 

10 LA « 2 
PRINT 508 

508 FORMAT (14H1REWARD MATRIX) 
GO TO 13 

11 LA = 3 
PRINT 514 

514 FORMAT <29H1ESTIMATED PROBABILITY MATRIX) 
GO TO 13 

C     COMPUTE TRUE OPTIMUM POLICY. 
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12 RETURN 
52 MAX » ITER < 5) 

OGAIN « VALUE(2) 
I     PRINT HEADER 

PRINT 530» IRUN 
530 FORMAT (8H1RUN NO »H/51H  IT  NO OBS   EST GAIN   ACT GAIN ACCUM 

10BS    EFF,5X.6HP0LICY) 
EGAIN *   OGAIN 
AGAIN = OGAIN 
ACCOBS » 0.0 
PROF * 0.0 
EFF * 0.0 
I = 0 

50 PRINT 502»I»NtEGAIN.AGAIN»ACCOBS.EFF,(K(J)tJ-ltNS) 
502 FORMAT (lX,I3»4X.I4,lX.Fl0.2»lX.F10.2»lX»F9.0.2X»F6.4t2X>I2,l4( 

11H»I2)) 
RETURN 

C     IF NOT I»0»COME HERE 
C     STORE CURRENT VALUES FO COMPUTE ACTUAL VALUES. 

2 DO 14 KA=1.NS 
14 HOLD(KA) = V(KA) 

AGAIN - VALUE(1) 
EGAIN = GAIN 
DO 16 KA * l.NS 

16 V(KA) = HOLD(KA) 
FNOBS = N 
PROF « PROF + FNOBS*AGAIN 
ACCOBS - ACCOBS+FNOBS 
EFF = PROF/(OGAIN*ACCOBS) 
GO TO 50 
END 
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SUBROUTINE OPUT(I.N) 
C     OPUT 4   FOR USE WITH MAIN 4 ONLY — EFF IN TERMS OF REWARDS 
C     I IS THE ITERATION NUMBER 
C     N IS THE NUMBER OF   TIMESS OPTIMUM WAS USED 

DIME^ ilON NA( 16)»K<15)»AP(150♦16)»R(150.16)»P(150»17)»W(15.16) 
DIMENSION VU5)»WORK2(15).A(15.15) 
DIMENSION OPR(150.17) 
COMMON OPR 
COMMON  NA.K.AP.R.P.W.V.NS.IPRES.GAIN.IRUN 
EQUIVALENCE  <A.W)»<W<226)»W0RK2) 
DIMENSION HOLD?15) 

C 
IF(I) 2»3»2 

C     IF 1-0, PRINT MATRICES 
3 PRINT 501.IRUN 

501 FORMAT (8H1RUN NO •!■+) 
C     PRINT ACTUAL PROBABILITY MATRIX 

PRINT 505 
505 FORMAT (26H1ACTUAL PROBABILITY MATRIX) 

LA-1 
13 PRINT 506.(L»L»1.10) 

506 FORMAT <6X»10{6X.12)♦5X»3HOBSt1IX.1HO) 
DO 9 L»l»NS 
MAX * NA(L+1)-NA(L) 
DO 9 KA=1»MAX 
IP * NA(L)+KA 
GO TO (6.7.8)tLA 

6 PRINT 507.L.KA,<AP(IP»J).J*1»NS  ) 
507 FORMAT (1H0.12»1H»12»2X»10F8.4/(8X,10F8»4 )) 

PRINT 531. APdP.NS + 1 ) 
531 FORMAT (1H+»99X.F10.4) 

GO TO 9 
7 PRINT 513.L.KA»(RCIP.J).J=l»NS) 

513 FORMAT (1H0.12.1H»I2.2X.10F8.2/<«X.10F8.2 ) ) 
GO TO 9 

8 PRINT 507»L.KA.(P(IP.J).J*1»NS   ) 
PRINT 520. P(IP,NS+l).P(IP,NS+2) 

520 FORMAT (1H+.88X.F10.0»IX.F10.4) 
9 CONTINUE 

GO TO (10.11.12) . LA 
C     PRINT REWARD MATRIX 

10 LA = 2 
PRINT 508 

508 FORMAT (14H1REWARD MATRIX) 
GO TO 13 

11 LA = 3 
PRINT 514 

514 FORMAT (29H1ESTIMATED PROBABILITY MATRIX) 
GO TO 13 

C     COMPUTE TRUE OPTIMUM POLICY. 
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12 MAX = ITER < 5) 
OGAIN » VALUE(2) 

C     PRINT HEADER 
PRINT 530» IRUN 

530 FORMAT (8H1RUN NO »I4/51H  IT  NO OPT   EST GAIN   ACT GAIN ACCUM 
10BS    EFF,5Xf6HPOLICY) 
EGAIN = OGAIN 
AGAIN = OGAIN 
ACCOBS * 0.0 
PROF * 0.0 
EFF « 0.0 

50 PRINT 502»I»N.EGAIN»AGAIN»ACCOBS»EFF»(K(J)»J«1»NS) 
5 02 FORMAT (lX,I3»4X.U»lX.Fl0.2»lXtFl0.2.1X.F9.0»lX.F6.2»2X.I2»l4< 

11H.I2)) 
RETURN 

C     IF NOT I=0tCOME HERE 
C     STORE CURRENT VALUES FO COMPUTE ACTUAL VALUES. 

2 PROFIT » WORK2(l> 
AGAIN = VALUE(l) 
PROF = PROF ♦ PROFIT 
ACCOBS = ACCOBS + 100» 
EFF = (PR0F/(C3AIN*ACC0BS))*100. 
EGAIN = GAIN 
GO TO 50 
END 
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SUBROUTINE PRIOR 
«      RESTORES ORIGINAL PRIOR AND GENERATES A SAM  E PROCESS 
C 

DIMENSION NA< 16)»K<15>.AP(150.16).R<150.16)*P(150.17)»W<15,16) 
DIMENSION V< 15) .WORK2U5) »A( 15.15) 
DIMENSION OPRU50.17) 
<  OMMON OPR 
COMMON  NA.K.AP.R.P.W.V.NS.IPRES.GAIN.IRUN 
EQUIVALENCE  (AvW)»<W(226).W0RK2) 
K=NS+2 
MAX = NA(K-l) 
DC 1 1 = 1,MAX 
DO 1 J=1»K 
P( I.J)=OPR<I,J) 
CALL GEN 
RETURN 
END 

78- 



SUBROUTINE GEN 
C     GENERATOES A SAMPLE PROCESS 
C     SPECIFICATIONS 

DIMENSION NA< 16) ,K(15),AP(150,16),R(150»16).P(150.17)»Wi 15*16) 
DIMENSION V< 15)»WORK2(15),A<15,15) 
DIMENSION OPR(150,17) 
COMMON OPR 
COMMON  NA»K»AP»R*P»W»V,NS#IPRES,GAIN,IRUN 
EQUIVALENCE  <A»W),(W(226)»W0RK2) 
N = NA(NS+1) 
DO 22   1*1,N 
SUM * 0. 
DO 20  J»1,NS 
M = P(ItJ)#P(I.NS+l) 
RAN =  0. 
DO 21  K=1,M 
AA = RANNOF(X) 

21 RAN = RAN - .05*LOGF(AA) 
AP(I,J) = RAN 

20 SUM = SUM + AP(I,J) 
DO 22      J=1,NS 

22 AP(I,J) = AP(I,J)/SUM 
DUMMY = VALUE(5) 
RETURN 
END 
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C     MAIN 1   5/5/64 
C     FOLLOW OPTIMAL POLICY OF EXPECTED PROCESS 
C 

DIMENSION NA(16)»K(15)»AP<150»16).R(150.16),P(150.17)»W<15»16) 
DIMENSION V(15)»WORK2(15)»A<15*15) 
DIMENSION OPRH50.17) 
COMMON OPR 
COMMON  NA»K.AP,R»P»W»V»NS,IPRES.GAIN,IRUN 
EQUIVALENCE  (A.W).{W(226)»WORK2) 
READ 502» IPRES.NOBS.NOITS.IRUN 
CALL ITJT 

502 FORMAT ( I 2»3X.I 3»3X♦i3»3X» 12 ) 
CALL OPUT<0,0) 

C     CHOOSE AN ITITIAL POLICY USING ESTIMATES 
IDUM = ITER(6) 

C     WASTE 25 RANDOM NUMBERS 
AA * SETUF«IRUN) 
DO 7 1-1.25 

7 AA=RANNOF(X) 
5 CALL PRIOR 

CALL OPUT (-1.0) 
C     SIMULATE NOITS ITERATIONS 

DO 2 I*ltN0lTS 
GAIN » VALUEtM 
CALL OBS(NOBS) 
CALL OPUT(I.NOBS) 

2 CONTINUE 
GO TO 5 
END 
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C     TRADE OFF BETWEEN IMMEDIATE GAIN AND INFORMATION 
DIMENSION NA(16)»K<15)»APt150.16)tR(150»16)»P<150.17)»W< 15116) 
DIMENSION V(15).WORK2(15).A(15.15) 
DIMENSION OPR(150.17) 
COMMON OPR 
COMMON  NA.K.AP.R.P.W.V.NS.IPRES.GAIN.IRUN 
EQUIVALENCE  <A»W),(W(226)»WORK2) 
DIMENSION  HOLD(150) 
READ 501.IPRES.IRUN.NOITS.ALPHA. BETA 

501 FORMAT <I 2.3X.12»3X»I 2.3X»F5.2»3X»F5.2 ) 
CALL IPUT 

C     WASTE 25 RANDOM NUMBERS 
AA; St'TUFt I RUN) 
DO 7 1=1.25 

7 AA = RANNOF(X) 
NS = NS 
MAX * NA(NS+1) 
CALL OPUT(O.O) 

6 CALL PRIOR 
CALL OPUT (-1.0) 
DO 1 KKK=1.N0ITS 

C     PUT O'S IN HOLDING AREA AND RELATIVI2E 
QMIN = 999999« 
DO 2 I»l»MAX 
TEMP = P(I ,NS + 2) 

2 QMIN -   MIN IF(QMIN,TEMP) 
DO 3 1=1.MAX 
HOLDU) = PU»NS + 2)-QMlN 

3 P(I»NS+2) = (HOLD(I)»*ALPHA)/P(I»NS+1) 
C     COMPUTE POLICY BY MAXIMIZING W 

IDUM « ITER(6) 
C     FIND MINIMUM W 

WMIN - 999999. 
DO 4 1=1»NS 
IDUM = K(I )+NA< I ) 
TEMP  = P(IDUM.NS+2) 

k   WMIN = MIN]F(WMIN»TEMP) 
C     RESTORE O'S 

DO   5   1=1»MAX 
5   PU.NS + 2)   =   H0LD(I)+QMIN 

C OBSERVE   PROPORTIONAL   TO  WMIN 
NOBS s (BETA*WMIN) + 1. 
GAIN a VALUE(3) 
CALL OBS(NOBS) 
CALL OPUT(KKK.NOBS) 

1 CONTINUE 
GO TO 6 
END 
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C     MAIN 3 
C      WEIGHTED REWARDS RECHNIOUE 
C     C=(ALPHA#Q)/N +1 

DIMENSIONNA(16).KU5) • AP (? 50 »16 ) »R < 150 » 16 ) »P ( 150 »17 ) ,W< 15 »16 ) 
DIMENSION V< 15),WORK2(15)»A(15.15) 
DIMENSION OPR(150,17) 
COMMON OPR 
COMMON NA♦K»AP »R♦P » W » V,NS♦I PR ES , GAIN.I RUN 
EQUIVALENCE <A,W).(W<226)»WORK2) 
DIMENSION C(150) 
READ 501.I RUN»IPRES»NOITS,ALPHA»BETA 

501 FORMAT (3(I 2»3X)»F5.0»3X,F5.0) 
CALL IPUT 
CALL OPUT (0»0) 

C     WASTE 25 RANDOM NUMCERWS 
AA = SETUFfIRUN) 
DO 2 I=l»25 

2 AA » RANNOF(X) 
IDUM=ITER(6) 
NS=NS 
MAX » NA(NS+1) 

99 CALL PRIOR 
CALL OPUT(-1,0) 
DO 3 I=l»NOITS 
DO 4 J=1»MAX 
C(J) = (ALPHA*ABSF<P(J.NS+2)))/P(J.NS+l> + 1.0 

4 PtJ.NS+2) * P(J,NS+2)*C(J) 
GAIN = VALUE(4) 
FNOBS = 0. 
DO 7 J=1»MAX 

7 PU.NS + 2) » P(J.NS+2)/C(J) 
C     COMPUTE EST. GAIN FOR POLICY USING NON-DUMMY Q«S 

GAIN * VALUE(3) 
DO 5 J=1»NS 
IMIN * NA(J) +1 
IMAX = NA(J+1) 
CMIN = 999999. 
DO 6 L=IMN»IMAX 
IF (CMIN-C(D) 6*6.8 

8 CMIN * C(L) 
ICMIN « L 

6 CONTINUE 
IDUM * NA(J) + K(J) 
IF( IDUM-ICMIN) 10,11,10 

11 FNOBS = FNOBS + BETA^P(IDUM.NS+1) 
GO TO 5 

10 FNOBSx(P(ICMIN,NS+1)*ABSF(P(IDUM.NS+2)))/ABSF(P(ICMIN»NS+2 ) )- 
1P( IDUM.NS+1) ♦ FNOBS 

5 CONTINUE 
NOBS = FNOBS 
CALL OBS(NOBS) 
CALL OPUT(I»NOBS) 

3 CONTINUE 
GO TO 99 
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MAIN 4  WEIGHTED VARIANCE TECHNIQUE 
DIMENSION NA(16)»K(15)»AP(150.16)»RU50.16)»P(150.17)»W(15.16) 
DIMENSION V( 15) .WORK2U5) .A( 15.15) 
DIMENSION OPR(150.17) 
COMMON OPR 
COMMON  NA.K.AP.R.P.W.V.NS.IPRES.GAIN.IRUN 
EQUIVALENCE  (A.W>»(W<226)»WORK2) 
DIMENSION Q(20) 
READ 501. IRUN.IPRES.NOITS.CEE 

501 FORMAT ( I 3»3X ♦ I 3.3X.I 3.3X»F10.5) 
WASTE SOME RANDOM NUMBERS 
AA = SETUF(IRUN) 
DO 2 I = 1.25 

2 AA = RANNOF(X) 
CALL IPUT 

14 CALL PRIOR 
CALL OPUT (0.0) 
DO 3 JJJ*l.NOITS 
NOPTS = 0 
PROFIT = 0.0 
DO 4 KKK = 1 .100 
EGAIN = VALUE14) 
KOPT m   K(IPRFS) 
MIN « NA(IPRES)+1 
MAX = NA(IPRES+1) 
VAR = 0.0 
NALT = 0 
DO 5 I=MIN.MAX 
TEST = 0.0 
DO 6 J=1.NS 

6 TEST = TEST + R(I»J)*P(I.J)*(l.-P(I.J)) 
TEST =(TEST/(((P( I.NS + 1))*(P( I »NS+1) + l•))**2))*CEE 
IF (TEST-VAR) 5.5.7 

7 VAR = TEST 
NALT = I 

5 CONTINUE 
IF (NA(IPRFS)+K(IPRESI-NALT) b.13,8 

8 DO 10 I=MIN»MAX 
J=I-MIN+1 
Q(J) =P(I.NS+2) 

10 PI!<NS+2) * -999999. 
J = NALT - MIN ♦ 1 
P(NALT.NS+2) = Q(J) 
TGAIN * VALUE(4) 
DO 11 I-MIN.MAX 
J=I-MIN+1 

11 P( ItNS-»-2) = Q(J) 
IF (EGAIN - TGAIN - VAR) 12.12.13 

13 K(IPRES) « KOPT 
NOPTS « NOPTS ♦ 1 
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12 IOLD * NA<IPRES) + K(IPRES) 
CALL OBS(1) 
IPRES « IPRES 
PROFIT • PROFIT + R(IOLD»IT RES) 

4 CONTINUE 
GAIN = VALUE<'♦ ) 
WORK2U) = PROFIT 
CALL OPUT (JJJ.NOPTS) 

3 CONTINUE 
GO TO 14 
END 
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C     MAIN5   PLOT DISTR. OF GAIN 
C     SPECIFICATIONS 

DIMENSION NA(16).K<15>.AP(150.16)»R(150.16)»P(150 . 17)»W<15.16) 
DIMENSION V(15) .WORK2(15).A(15.15) 
DIMENSION   OPRH50.17) 
COMMON OPR 
COMMON  NA.K.AP.R.P.W.V.NS.IPRES.GAIN.IRUN 
EQUIVALENCE  (A»W)»(W(226)»W0RK2) 
DIMENSION G(51) 
READ 501 ♦IRUN.MA.X.MTIM 

501 FORMAT (I3»3X♦14»3X.14) 
C     WASTE SOME RANXOM NUMBERS 

AA * SETUF(IRUN) 
DO 12 1=1*25 

12 AA = RANNOF(X) 
14 CALL IPUT 

C     COMPUTE RANGE OF GAIN 
PGAIN = VALUE(4) 
PRINT 503.PGAIN 
RMIN = PGAIN*.85 
RMAX = PGAIN*1.15 
RINC = (RMAX-RMIN)/50. 

C     INITIALIZE 
GSUM « 0. 
GSO = 0, 
DO 3 1=1.51 

3 G(I) = 0, 
C     BEGIN SIMULATION LOOP 

DO 6 KKK = l.MAX 
CALL GEN 
GAIN = VALUE<2) 
GSUM = GSUM + GAIN 
GSQ = GSQ + GAIN*GAIN 
GAIN = GAIN - RINC 
DO 7 JKM.50 
IF(GAIN-RMIN) 5.5.4 

5 G(JIC) = G(JK) +1. 
GO TO 9 

4 GAIN = GAIN - RINC 
7 CONTINUE 

G(51) = G(51) + 1, 
9 FMAX = KKK 

CALL TIMLFT(JTIM) 
IF(JTIM-MTIM) 10.10.6 

6 CONTINUE 
10 GMEAN = GSUM/FMAX 

GVAR = GSO/FMAX - GMEAN*GM£AN 
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PRINT 502»GMEAN»GVAR»P6AIN.FMAX 
502 FORMAT (1H1»6Xf4HGAIN»2X»4HPR0B»2X.6HMEAN »»F10.4t2X»5HVAR «»F10.4 

1»2X,10HEXP GAIN »»F10.4.2Xt10HNO SAMPS »»F6.0) 
DO 8 I=1#51 
G( I ) « G(IJ/FMAX 
RMIN * RMIN + RINC 
PRINT 503tRMIN,G<I) 

503 FORMAT ( IX»F10.2»2X»F10.5) 
8 CONTINUE 

GO TO 14 
END 
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NUMERICAL SOLUTION TO SPECIAL TWO STATE PROBLE*« 
DIMENSION P(2»2)» R<3»2). V(IOOO)» IBDY(IOOO) 
DO 21 II-1.5 

2 READ 101 , BETA.NMAX 
READ 102» P(l.l). P(1.2>. P(2,l). P(2»2) 
READ  102» RC1.1). RC1»2). R(2»l)» R(2»2)» R(3»l>» R(3»2) 

101 FORMAT (F10.0.I5) 
102 FORMAT (6F10.0) 

Al = R(3»l) + BETA*(P(1»1)*R(1»1) + P (1. 2 ) *R (1 »2 ) ) / (1 .0 - 
1  P(1»1)*BETA) 
A2 = (P(1»2)*BETA*BETA)/(1.0 - P<1»1)*BETA ) 
A3 = R(3»2) 
A4 = BETA 
C = (A4*P(2»1)*(P(1»1)*R<1»1) + P(1.2>*R<1»2>) + (1.0 - A4»P<1,1)) 

1 *(P(2»1)*R(2»1) + P(2»2)*R(2»2)»)/((!.0 - A4*P(1.1))*( 1 .0 - A4* 
2 Pl2t2))   - P(1»2)»P(2»1)*A4*A4) 
DO 5 I=1.NMAX 
FN=NMAX 
S=I 
V(I) = (S*A1/FN + (1.0 - S/FN)*A3)/(1.0 - S*A2/FN - (1.0 - S/FN)* 

1   A4) 
IF(V(I)-C)6»6.5 

6 V(I >=C 
MAXR*I 
IBDY(NMAX)«MAXR 
GO TO 7 

5 CONTINUE 
GO TO 3 

7 DO 4 I=MAXR»NMAX 
4 V( I )=C 
3 NM=NMAX-1 

20 FORMAT (I 5»I 5/(1CF10.4)) 
DO 12 NNxl.NM 
N*NMAX-NN 
FN*N 
DO 8 Jsl,N 
S»J 

9 V(J) = (S*(A1+A2*V(J + l))/FN) + (l.-S/FN)*(A3+A4*V(J) ) 
IF(V(J)-C)10»10»8 

10 V(J) = c 
IBDY(N)=J 
GO TO 11 

8 CONTINUE 
11 IBDN=IBDY(N) 

IF(N-51)300»300»301 
300 PRINT 20, N»IBDN.(V( D.I-l.IBDN) 
301 CONTINUE 
12 CONTINUE 

PRINT 105» (IBDY(J).J«1.NMAX) 
105 FORMAT (IX»2013»2X/) 
21 CONTINUE 

CALL EXIT 
END 



A. 17     Flow Charts MAIN 1 

READ PROCESS 
(IPUT) 

READ IPRES, 
NOBS, NOITS, 
IRUN 

PRINT 
PROCESS 

(OPUT(0,0))| 

 ± 
Choose an ini- 
tial policy to 
start calcula- 
tions 
(IDUM=ITER(6)) 

I 
WASTE 25 

RANDOM NUMBERS 

GENERATE A 
SAMPLE PROCESS 

(GEN) 

1 
1=1 

FIND OPTIMAL 
POLICY OF 
EXPECTED 
PROCESS 
(GAIN=VALUE(IQ) 

SIMULATE NOBS 
OBSERVATIONS 
UNDER THAT 
POLICY 
(OBS (NOBS)) 

PRINT I 
EFFICIENCY 
GAIN, 

LPOLICY 
10PUT(I 

-88- 



MAIN 2 

YES/   KKK= 
NOITS^ 

PRINT 

RESULTS 

WASTE 25 
RANDOM 
NUMl-LRS 

•-} 

OBSERVE NOBS 
TRANSITIONS 
UNDER THIS POL4 
ICY (OBS(NOBS)) 

FIND GAIN OF 
THIS POLICY 

(GAIN=VALUE(3)] 

READ PROCESS 
(IPUT) (GEN) 
(PRIOR) 

ü 
READ IPRES, IRUN, 
NOITS, ALPHA, 
BETA 

PRINT 
PROCESS 

(OPUT(0,0)) 

KKK=1 

FIND MINIMUM 

«i- 
QMIN 

i_ 
SAVE Qi'S 
REFLACE BY 
Wi=(Qi-QMlN)

a 

—r<— 

COMPUTE POLICY 
TO MAXIMIZE 
Wi IN EACH 
STATE(ITER(6^) 

*~ 

RESTORE Qi'S 

NOBS- ß • WMINI 
+ 1. 



MAIN 3 

PRINT 
FINAL 
MATRICES 
(OPUT(0,0)) 

SIMULATE 
FNOBS OBSER- 
VATIONS 

(OBS(NOBS)) 

READ IPRES, 
IRUN. NOITS, 
.ALPHA, BETA 
 *_ 

■if    READ PROCESS 

PRINT 
PROCESS 

(OPUTCCSO)) 

WASTE 25 
RANDOM 
LUMBERS 

CHOOSE AN 
INITIAL 
POLICY 
(ITER 6) 

FIND OPTIMUM 
[WEIGHTED POLICE 

(VALUE(4)) 
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MAIN k 

OPERATE UNLiR 
CTIMUM 
I""  LICY 
NOITS=NOITS+l 

READ IRUN, IPRES, 
NOITS, CEE. 

WASTE 25 

RANDOM NUMBERS 

READ PROCESS 
(IPIJT) (      v 
(PRIOR)(GEN) 

z 
PRINT 
PROCESS 

(0PUT(0,O)) 

JJJ=1 
(Up to 
NOITS) 

NOITS=0 
(No of OPTS) 
PROFIT=0 

i" 
KKK=1 

(Up to 
100) 

FIND ALTERNA- 
TIVE WITH NUN 
TOTAL VARIANCE 
IN STATE IPRES 
CALL IT NALT 

/"NALT IN 
' THE OPTIMUM" 

.POLICY 

FIND GAIN OF 
BEST POLICY 
USING NALT- 

TG AIN 

JJJ=JJJ+1 

YES 

PRINT 
RESULTS OF 
100 OBS 
(0PUT(JJJ, 
NOBS)) 

KKK=KKK 
+1 ^<CKKK--ICC> 

OPERATE 

.YEflj UNDER 
NALT 

•91- 

OBSERVE A 
TRANSITION 
PROFIT=PROFIT 
+REWARD 



DISTRIBUTION OF GAIN 

READ IRUN, 

MAX, MTIM 

WASTE 25 

RANDOM NUMBERS 

READ PROCESS 
(IPUT) 

RINC= 
RMAX-RMIN 

50 

GSUM=0 

GSQ=0 

I 
G(I)-0 

1=1,51 

3Z 
KKK-1 

(iteration 
count) 
X 

GENERATE A 
SAMPLE PROCESS 

(GEN) 

 E  : 
FIND GAIN 
OF SAMPLE 
PROCESS 

GSUM=GSUM 

+GAIN 

PRINT 

RESULTS 

CONVERT COUNTS 
TO FREQUENCIES 

3(I)=G(I)/FMAX 
 *  

GVAR=GSQ/FMAX 

-(GMEAN)
2 

GMEAN= 
GSUM/FMAX 

INCREMENT 
PROPER CELL 
BY 1 

T 
GSQ=GSQ+ 

GAIN.GAIN 
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APPENDIX  B 

SUMMARY OF COMPUTER RUNS 

B. 1        Runs with   MAIN  I 

B. 1. 1    Extreme point from sample process   (Run  I ) 

We chose as a prior the following matrix,   { P..   } ,  with its correspond- 
k ^ 

ing set of prior parameters  N. : 

1 

3 = 1 

{ Pk } 

j = 2 j = 3 

i=l k=l 1/3 1/3 1/3 

k = 2 1/10 8/10 1/10 

k = 3 1/10 1/10 8/10 

i = 2 k=l 2/10 0 8/10 

k = 2 8/10 1/10 1/10 

i=3 k=l 1/3 1/3 1/3 

k = 2 1/4 1/2 1/4 

k = 3 8/10 1/10 1/10 

30 

20 

60 

30 

20 

30 

15 

40 

As the actual process we used the taxicab example presented in 

the introduction.    The actual process will be seen to be an    extreme 

point    from the prior.    As expected ( see 6. 2 ),   only policy ( 1, 1, 1 ) 

with an actual gain of 9. 24  is ever chosen.     The true optimum (2,2,2) 

with gain of  13. 34,   is never discovered. 
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B. 1. 2      Randomly chosen processes  (Run  10) 

This run was for a five-state process with three alternatives 

in each state.    Both the prior probabilities and the rewards were drawn 

from random number tables.    Each  N.   was chosen to be   25,  which we 
l 

consider expresses a small degree of   certainty.      The results are 

summarized in the table following.    Notice that the optimal solution 

(or one very close to it) was always found quite rapidly,  and that effi- 

ciency stays in the high 90's. 

B.2 Runs with  MAIN II 

B.2. 1      Run 2 

The same data was used as in Run 1, but MAIN II was used 

to try to force (2,2,2) to be explored. Our parameters were a =20, 

ß = 100.    In 25 iterations,  only policy (1,1,1) was chosen. 

B. 2. 2      Run  3 

We used the same data again,  but modified our parameters to 

a =2,   ß = 100.    Some experimentation was introduced: (1,1,1) was used 

for the first   19 iterations,  then (1, 2, 1 ) with gain of  12. 50 is tried for 

6  iterations,  then (1,2,2) with gain of  13. 15 is tried once.    But,  then 

the process locks on (1,1,1). 
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RUN 10 

50 ITERATIONS OF 20 OBSERVATIONS 

MAIN I 

Sample    Optimal 
Point        Policy 

1 

2 

3 

4 

5 

Optimal      Max.      Iteration 
Gain Eff. # 

1,3,1,2,1        5.68 

1,3,1,2,1        5.82 

.9968        50 

1,1,1,2,1        5.61 1.0000 

1,3,1,2,3       5.83 

1,1,1,2,1        6.20        1.000 

Min.   Iteration 
Eff. # 

9677 1 

No       Diff.   policies 
Opts. tried 

45 2 

.9990 50 .9524 1 49 2 

.0000 1 .9886 2 38 3 

.9873 50 .9783 1 0 2 

.000 50 1.000 1 50 1 
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B. 3 Runs with   MAIN  III 

B. 3. 1      F.un 4 

Same data as  Run 1,   with parameter  a =20. 

Iteration NOBS Policy Est.gain Act gain 

i 54 221 8.69 8.81 

2 111 111 9.38 9.20 

3 34 222 5. 70 13.34 

4 18 222 9.26 13.34 

5 8 222 10.57 13.34 

6 8 222 11.76 13.34 

7 5 222 10.90 13.34 

8 5 222 11. 12 13.34 

9 4 222 11. 14 13.34 

10 4 222 11.29 13. 34 

11 40 212 

Locks on 222 

8.95 8.81 
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B.3.2   Run 5:   MAIN  III,   same data as Run 1,   ß = 0.4,   a = 20 

Iteration NOBS Policy Est gain Act gain 

1 54 212 8.69 8.81 

2 133 111 9. 38 9.20 

3 40 222 5. 70 13. 34 

4 19 222 9.46 13.34 

5 37 111 10.33 13.34 

6 62 212 8.99 8.81 

7 85 222 11.07 - 

8 138 212 9.09 - 

9 287 122 12.05 13. 15 

10 863 ill 9.29 - 

11 233 222 12.85 - 

12 287 222 13.04 - 

13 708 212 8.99 - 

14 620 222 13.24 - 

15 1418 122 13.04 13. 15 

16 2004 323 8.93 8.98 

17 4406 111 9.24 - 

18 Locks on 222 (no.  of observations at each iteration grows 
larger and larger) 
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B. 3. 3   Run 6 

Same data as Run 5,  but parameters  a = 20,   ß= 0. 1.    This now 

uses (2, 2, 2),  most of the time,   but converges slowly to it     Begins 

with (2, 1,2),  then (1, 1, 1),   and later returns to (2, 1, 2) for a few itera- 

tions.    Convergence is slow. 

B. 3 ■ 4   Run 7 

Same data as Run 6,   with  a =20,   ß = .01.    Same general shape 

as Run 6,  but there are more observations in later stages. 

B. 3. 5   Run 8 

More weight is given to immediate returns by making a =40, ß = . 1 

See graph following for plot of efficiency (see Chapter VI) versus accumu- 

lated number of observations. 

B. 3. 6   Run 9 

Same data,    a = 10,   ß = 1.    See graph following. 
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APPENDIX  C 

FINDING A SECOND BEST POLICY 

C- 1        Motivation 

In Chapter   VII  we discussed the advantages of being able tu 

select the ten best policies for the expected process,   in order to 

simulate and find more explicit information about these most-likely 

candidates.    But finding the ten best policies hinges upon finding an 

algorithm to find the second best policy. 

C- 2        Impossibility of exact solution 

Let  O  denote the optimal policy of a known process ( such as 

the expected process),  and let  N denote the next,  or second,   best 

policy.    Then : 

AON 
g     =  g     -  g 

is to be a minimum for   N^ O. 

Define: 

r.      ,    O J   V      O      O,     r    N A V      N     O, 
7.    =   L q.    +    /     p..    v .   J - I q.    +    >    p..   v .   J 

j j 

Je know that: 

O        O        O     V     O      o 
g     +  v .    =  q .   +     >    p..   v. 

j 

Nx      N N A   \        N       N 
g     +  v.    =q.    +     >     p.      v. 

1       i     L    IJ    j 
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Thus: 

O         N         O          N          N      V N      O \ N N 
2        ~    R        +    V .       -V.       =7.      +     / P..     V. -      > p.. V. 6              B                   1                1                 1            L *J          » O 1J 1 

j J 

N 
Multiplying both sides by   TT .     and summing over  i , we have: 

)       ((Z       -    2      )    7r.     +      )        V.       7T. ->V. 7T.      =      ) 7.       7T. 

VVNNOVVNNN 
-     > >       p.TT.       V .      -      > )       p..      7T.        V. 

N 
P . .      TT .        V 

lj 1 

i j * j 

But we recall that  it p = ir ,   whence, 

VVNNO       V°N 
/ P..7T. v.= / V It . 

LJ      L ij i J L> j J 

V     V        N       N       N \        N       N 
7 / P.7T.        V .       = /        V. 7T. 

£y        ^ lj 1 J ^ J J 

N 
P    .       ff . V .       -         ?        V .         7T 

lj           1 J                  L           J 

1            J J 

So finally, 

ON         A V        N       N 
g   - g   = g    = >    y.    ». 

Thus,  the second best policy is that which minimizes: 

y /•■ N 
7. N # O 

But minimizing this quantity involves a search through all possible 

sets of  IT.       and this is prohibitive. 
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C- 3        Approximations to second best policy 

We can 6et an    approximation    by changing only one state from 

the optimal policy,   so that 

7.      =0      i * k 
i 

N 
7,      =     min possible for that state > 0 

k 

This procedure serves to minimize: 

N 
7. 

l 

l 

but ignores the weighting by the   w 's. 

C. 4        Justification of approximation 

This approximation procedure may be used as follows: 

1. Find optimum policy. 

2. Perturb each state: i.e. ,   find  N  policies,   each differing from the 

optimal in one state.    Make best such perturbation possible in each 

state (that is minimize 7.). 

3. Apply mean-variance algorithm to these  N  policies. 

The obvious disadvantage of this ipproaeh is that the   N  policies so 

determined are not actually the   N  best.    But a compensating advantage 

is that at least   2  a'ternatives in each state are always considered,   which 

encourages wide consideration of experimentation.    Also,   since the   N 

best policies of the expected process are not necessarily the   N  best of 

the actual process,   it is not so critical to find the precise   N best of 
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the expected process,   so long as the ones chosen embrace a wide 

variety of alternatives,  and are reasonable candidates for inspec- 

tion.    This approximation technique meets these demands. 
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